Bootstrap

国密算法 SM9 公钥加密 数字签名 密钥交换 基于身份的密码算法(IBC)高效python代码

接上篇:国密算法 SM9 公钥加密 数字签名 密钥交换 基于身份的密码算法(IBC)完整高效的开源python代码-CSDN博客

接触过国密算法Python库——hggm的朋友可能知道,库中SM2、SM3、SM4、ZUC都区分了慢速版和快速版:慢速版纯Python实现,代码逻辑清晰适合教学;快速版用了外挂(如numba),牺牲代码可读性或部分Python特性以追求更高的效率。上篇SM9代码虽然集成了若干关于效率优化的文献研究成果,但毕竟是纯Python实现的,我还是放在了慢速版(/slow目录下),这显然是给自己挖了坑。没发现合适的外挂,故而继续在数学上做文章,在上篇代码的基础上,主要进行了3项优化:

①固定点乘预计算。SM9的两个椭圆曲线群G1、G2的生成元分别是P1、P2,还有用户签名私钥ds,算法中多次出现与这些固定点的点乘运算(k·P),类似SM2,可提前计算好k的每一个字节位置与P相乘的结果并保存,后续点乘运算则转变为31次点加法。实测有6.~倍的效率提升。

②采用Comb固定基的高次幂运算。算法中多次出现以gs和ge为底的幂运算(gs=e(P1, Ppub_s), ge=e(Ppub_e, P2)),提前计算好gs和ge的预计算表,后续幂运算转变为31次乘法和31次平方计算(见文献:王江涛,樊荣,黄哲. SM9中高次幂运算的快速实现方法[J]. 计算机工程,2023,49(9):118-124,136. DOI:10.19678/j.issn.1000-3428.0065618)。实测有4倍左右的效率提升。

③固定G2点的双线性对预计算。用户加密私钥de(椭圆曲线群G2上的点)经常参与双线性对计算,可预先计算好双线性对Miller循环中由该点衍生出的所有系数,后续计算双线性对时可简化线函数,并省略点加。不过实测只有10%左右的效率提升。

当然上述优化都是针对特定的计算步骤,签名验签、加解密、密钥交换等算法中也包含了许多不符合上述情况的耗时步骤,因此实际提升幅度没有那么大。虽然依旧是纯Python实现,但上述优化也以牺牲可读性为代价,所以放在了快速版这边。

完整代码如下:

import os
from random import randrange
from math import ceil
from .SM3 import digest as sm3

# SM9总则(GB_T 38635.1-2020) A.1 系统参数
q = 0XB640000002A3A6F1D603AB4FF58EC74521F2934B1A7AEEDBE56F9B27E351457D  # 基域特征
N = 0XB640000002A3A6F1D603AB4FF58EC74449F2934B18EA8BEEE56EE19CD69ECF25  # 群的阶
# 群G1的生成元 P1=(x_p1, y_p1)
x_p1 = 0X93DE051D62BF718FF5ED0704487D01D6E1E4086909DC3280E8C4E4817C66DDDD
y_p1 = 0X21FE8DDA4F21E607631065125C395BBC1C1C00CBFA6024350C464CD70A3EA616
# 群G2的生成元 P2=(x_p2, y_p2)
x_p2 = (0X85AEF3D078640C98597B6027B441A01FF1DD2C190F5E93C454806C11D8806141,
        0X3722755292130B08D2AAB97FD34EC120EE265948D19C17ABF9B7213BAF82D65B)
y_p2 = (0X17509B092E845C1266BA0D262CBEE6ED0736A96FA347C8BD856DC76B84EBEB96,
        0XA7CF28D519BE3DA65F3170153D278FF247EFBA98A71A08116215BBA5C999A7C7)
HASH_SIZE = 32  # sm3输出256位(32字节)
N_SIZE = 32  # 阶的字节数
KEY_LEN = 128  # 默认密钥位数
K2_len = 256  # MAC函数中密钥K2的位数


def to_byte(x, size=None):
    if type(x) is int:
        return x.to_bytes(size if size else ceil(x.bit_length() / 8), byteorder='big')
    elif type(x) in (str, bytes):
        x = x.encode() if type(x) is str else x
        return x[:size] if size and len(x) > size else x  # 超过指定长度,则截取左侧字符
    elif type(x) in (tuple, list):
        return b''.join(to_byte(c, size) for c in x)
    return bytes(x)[:size] if size else bytes(x)


# 将字节转换为int
def to_int(byte):
    return int.from_bytes(byte, byteorder='big')


# 广义的欧几里得除法求模逆(耗时约为slow/SM2代码内get_inverse函数的43%)
def mod_inv(a, mod=q):
    if a == 0:
        return 0
    lm, low, hm, high = 1, a % mod, 0, mod
    while low > 1:
        r = high // low
        lm, low, hm, high = hm - lm * r, high - low * r, lm, low
    return lm % mod


class FQ:
    def __init__(self, n):
        self.n = n

    def __add__(self, other):
        return FQ(self.n + other.n)

    def __sub__(self, other):
        return FQ(self.n - other.n)

    def __mul__(self, other):  # 右操作数可为int
        return FQ(self.n * (other.n if type(other) is FQ else other) % q)

    def __truediv__(self, other):  # 右操作数可为int
        return FQ(self.n * mod_inv(other.n if type(other) is FQ else other) % q)

    def __pow__(self, other):  # 操作数应为int
        return FQ(pow(self.n, other, q) if other else 1)

    def __eq__(self, other):  # 右操作数可为int
        return self.n % q == (other.n if type(other) is FQ else other) % q

    def __neg__(self):
        return FQ(-self.n)

    def __repr__(self):
        return 'FQ(%064X)' % (self.n % q)

    def __bytes__(self):
        return to_byte(self.n % q, N_SIZE)

    def is_zero(self):
        return self.n % q == 0

    def inv(self):
        return FQ(mod_inv(self.n))

    def sqr(self):
        return FQ(self.n * self.n % q)

    @classmethod
    def one(cls):
        return cls(1)

    @classmethod
    def zero(cls):
        return cls(0)


class FQ2:
    def __init__(self, *coeffs):  # 国标中的表示是高位在前,而此处coeffs是低位在前
        self.coeffs = coeffs

    def __add__(self, other):
        (a0, a1), (b0, b1) = self.coeffs, other.coeffs
        return FQ2(a0 + b0, a1 + b1)

    def __sub__(self, other):
        (a0, a1), (b0, b1) = self.coeffs, other.coeffs
        return FQ2(a0 - b0, a1 - b1)

    def sqr(self):
        a0, a1 = self.coeffs
        return FQ2((a0 * a0 - (a1 * a1 << 1)) % q, (a0 * a1 << 1) % q)  # (a0^2 - 2 * a1^2, 2 * a0 * a1)

    def sqr_u(self):
        a0, a1 = self.coeffs
        return FQ2(-(a0 * a1 << 2) % q, (a0 * a0 - (a1 * a1 << 1)) % q)  # (-4 * a0 * a1, a0^2 - 2 * a1^2)

    def mul_b_u(self, b):  # 带参数乘法
        (a0, a1), (b0, b1) = self.coeffs, b.coeffs
        return FQ2(-(a0 * b1 + a1 * b0 << 1) % q, (a0 * b0 - (a1 * b1 << 1)) % q)  # (-2*(a0*b1+a1*b0), a0*b0-2*a1*b1)

    def __mul__(self, other):
        if type(other) is int:
            a0, a1 = self.coeffs
            return FQ2(a0 << 1, a1 << 1) if other == 2 else FQ2(a0 * other % q, a1 * other % q)
        (a0, a1), (b0, b1) = self.coeffs, other.coeffs
        a0b0, a1b1 = a0 * b0, a1 * b1  # Karatsuba 思想方法(节约一次乘法),实测此处约有5%提升,用在其他地方未见性能提升
        return FQ2((a0b0 - (a1b1 << 1)) % q, ((a0 + a1) * (b0 + b1) - (a0b0 + a1b1)) % q)  # (a0*b0-2*a1*b1,a0*b1+a1*b0)

    def __rmul__(self, other):
        return self.__mul__(other)

    def __truediv__(self, other):
        if type(other) is int:
            other_inv = mod_inv(other)
            return FQ2([c * other_inv % q for c in self.coeffs])
        return self * other.inv()

    def inv(self):
        a0, a1 = self.coeffs
        if a0 == 0:
            return FQ2(0, -mod_inv(a1 << 1))  # (0, -(2 * a1)^-1)
        if a1 == 0:
            return FQ2(mod_inv(a0), 0)  # (a0^-1, 0)
        k = mod_inv(a0 * a0 + (a1 * a1 << 1))  # k = (a0^2 + 2 * a1^2)^-1
        return FQ2(a0 * k % q, -a1 * k % q)  # (a0 * k, -a1 * k)

    def conjugate(self):  # 共轭
        a0, a1 = self.coeffs
        return self.__class__(a0, -a1)

    def get_fp_list(self):  # 返回所有基域元素(高位在前)
        if type(self) is FQ2:
            return [i % q for i in self[::-1]]
        return [y for x in self[::-1] for y in x.get_fp_list()] if self.coeffs else [0] * 4  # 注意FQ4对象零值的处理

    def __repr__(self):
        return '%s(%s)' % (self.__class__.__name__, ', '.join('%064X' % i for i in self.get_fp_list()))

    def __bytes__(self):  # 字节串高位在前
        return to_byte(self.get_fp_list(), N_SIZE)

    def __eq__(self, other):
        return self.get_fp_list() == other.get_fp_list()

    def __neg__(self):
        return self.__class__(*[-c for c in self.coeffs])

    def __getitem__(self, item):
        return self.coeffs[item]

    def is_zero(self):
        return all(c % q == 0 for c in self.coeffs) if type(self) is FQ2 else all(c.is_zero() for c in self.coeffs)

    @classmethod
    def one(cls):
        return FQ2_one if cls is FQ2 else (FQ12_one if cls is FQ12 else FQ4_one)

    @classmethod
    def zero(cls):
        return FQ2_zero if cls is FQ2 else ()


class FQ4(FQ2):  # 零元的coeffs为空,可优化FQ12稀疏乘法运算
    def __add__(self, other):
        if not self.coeffs:
            return other
        if not other.coeffs:
            return self
        (a0, a1), (b0, b1) = self.coeffs, other.coeffs
        return FQ4(a0 + b0, a1 + b1)

    def __sub__(self, other):
        if not self.coeffs:
            return -other
        if not other.coeffs:
            return self
        (a0, a1), (b0, b1) = self.coeffs, other.coeffs
        return FQ4(a0 - b0, a1 - b1)

    def sqr(self):
        if not self.coeffs:
            return FQ4_zero
        a0, a1 = self.coeffs
        return FQ4(a0.sqr() + a1.sqr_u(), a0 * a1 * 2)  # (a0^2 + a1^2 * u, 2 * a0 * a1)

    def sqr_v(self):
        if not self.coeffs:
            return FQ4_zero
        a0, a1 = self.coeffs
        return FQ4(a0.mul_b_u(a1) * 2, a0.sqr() + a1.sqr_u())  # (2 * a0 * a1 * u, a0^2 + a1^2 * u)

    def mul_b_v(self, b):  # 带参数乘法
        if not self.coeffs or not b.coeffs:
            return FQ4_zero
        (a0, a1), (b0, b1) = self.coeffs, b.coeffs
        return FQ4(a0.mul_b_u(b1) + a1.mul_b_u(b0), a0 * b0 + a1.mul_b_u(b1))  # (a0*b1*u+a1*b0*u, a0*b0+a1*b1*u)

    def __mul__(self, other):
        if not self.coeffs:
            return FQ4_zero
        if type(other) is int:
            a0, a1 = self.coeffs
            return FQ4(a0 * other, a1 * other)
        if not other.coeffs:
            return FQ4_zero
        (a0, a1), (b0, b1) = self.coeffs, other.coeffs
        return FQ4(a0 * b0 + a1.mul_b_u(b1), a0 * b1 + a1 * b0)  # (a0*b0+a1*b1*u, a0*b1+a1*b0)

    def inv(self):
        if not self.coeffs:
            return FQ4_zero
        a0, a1 = self.coeffs
        k = (a1.sqr_u() - a0.sqr()).inv()
        return FQ4((-a0 * k), a1 * k)


class FQ12(FQ2):
    def __add__(self, other):
        (a0, a1, a2), (b0, b1, b2) = self.coeffs, other.coeffs
        return FQ12(a0 + b0, a1 + b1, a2 + b2)

    def __sub__(self, other):
        (a0, a1, a2), (b0, b1, b2) = self.coeffs, other.coeffs
        return FQ12(a0 - b0, a1 - b1, a2 - b2)

    def sqr(self):
        a0, a1, a2 = self.coeffs
        return FQ12(a0.sqr() + a1.mul_b_v(a2) * 2, a0 * a1 * 2 + a2.sqr_v(), a0 * a2 * 2 + a1.sqr())

    def __mul__(self, other):
        (a0, a1, a2), (b0, b1, b2) = self.coeffs, other.coeffs
        return FQ12(a0 * b0 + a1.mul_b_v(b2) + a2.mul_b_v(b1), a0 * b1 + a1 * b0 + a2.mul_b_v(b2),
                    a0 * b2 + a1 * b1 + a2 * b0)

    def sqr2(self):  # 分圆循环子群Gϕ6(Fp2)中的元素平方
        a, b, c = self.coeffs
        a2, b2, c2v = a.sqr(), b.sqr(), c.sqr_v()
        return FQ12(a2 + (a2 - a.conjugate()) * 2, c2v + (c2v + b.conjugate()) * 2, b2 + (b2 - c.conjugate()) * 2)

    def __pow__(self, other):  # 实际运行此函数的对象都是分圆循环子群Gϕ6(Fp2)中的元素
        if other > 10:  # 加减法
            h, k = bin(3 * other)[2:], bin(other)[2:]
            k, t, nf = '0' * (len(h) - len(k)) + k, self, self.frobenius6()
            for i in range(1, len(h) - 1):
                t = t.sqr2()
                if h[i] == '1' and k[i] == '0':
                    t = t * self
                elif h[i] == '0' and k[i] == '1':
                    t = t * nf
        else:
            t = self
            for ri in bin(other)[3:]:
                t = t.sqr2() * self if ri == '1' else t.sqr2()
        return t

    def inv(self):
        a0, a1, a2 = self.coeffs
        a0_2, a1_2 = a0.sqr(), a1.sqr()
        if a2.is_zero():
            k = (a0 * a0_2 + a1.mul_b_v(a1_2)).inv()
            return FQ12(a0_2 * k, (-a0 * a1 * k), a1_2 * k)
        t0, t1, t2 = a1_2 - a0 * a2, a0 * a1 - a2.sqr_v(), a0_2 - a1.mul_b_v(a2)
        t3 = a2 * (t1.sqr() - t0 * t2).inv()
        return FQ12(t2 * t3, (-t1 * t3), t0 * t3)

    def frobenius(self):
        (a0, a1), (b0, b1), (c0, c1) = self.coeffs
        a = FQ4(a0.conjugate(), a1.conjugate() * alpha3)
        b = FQ4(b0.conjugate() * alpha1, b1.conjugate() * alpha4)
        c = FQ4(c0.conjugate() * alpha2, c1.conjugate() * alpha5)
        return FQ12(a, b, c)

    def frobenius2(self):
        a, b, c = self.coeffs
        return FQ12(a.conjugate(), b.conjugate() * alpha2, c.conjugate() * alpha4)

    def frobenius3(self):
        (a0, a1), (b0, b1), (c0, c1) = self.coeffs
        a = FQ4(a0.conjugate(), -a1.conjugate() * alpha3)
        b = FQ4(b0.conjugate() * alpha3, b1.conjugate())
        c = FQ4(-c0.conjugate(), c1.conjugate() * alpha3)
        return FQ12(a, b, c)

    def frobenius6(self):
        a, b, c = self.coeffs
        return FQ12(a.conjugate(), -b.conjugate(), c.conjugate())


class ECC_Point:
    def __init__(self, *pt):  # 采用Jacobian射影坐标计算,输入仿射坐标后会转换为Jacobian射影坐标
        self.pt = pt if len(pt) == 3 else (*pt, pt[0].one())

    @classmethod
    def from_byte(cls, byte):  # 输入bytes类型仿射坐标,构建点对象
        fp_num = len(byte) // (N_SIZE << 1)  # 单个坐标包含的域元素个数
        if fp_num in (1, 2) and len(byte) % N_SIZE == 0:
            fp_list = [to_int(byte[i:i + N_SIZE]) for i in range(0, len(byte), N_SIZE)]  # 将bytes转换为域元素列表
            if fp_num == 1:
                return cls(FQ(fp_list[0]), FQ(fp_list[1]))
            x_list, y_list = fp_list[fp_num - 1::-1], fp_list[:fp_num - 1:-1]  # 从bytes到FQ2对象保存的域元素,需翻转高低位顺序
            return cls(FQ2(*x_list), FQ2(*y_list))
        return False

    def is_inf(self):
        return self[2].is_zero()

    def is_on_curve(self):  # 检查点是否满足曲线方程 y^2 == x^3 + b
        x, y, z = self.pt
        return y ** 2 == x ** 3 + (_b1 if type(x) is FQ else _b2) * z ** 6

    def double(self):
        x, y, z = self.pt
        _3x2, _2y = x.sqr() * 3, y * 2
        _4y2 = _2y.sqr()
        _4xy2 = x * _4y2
        x3 = _3x2.sqr() - _4xy2 * 2
        return ECC_Point(x3, _3x2 * (_4xy2 - x3) - _4y2.sqr() * _2_inv, _2y * z)

    def zero(self):
        cls = self[0].__class__
        return ECC_Point(cls.one(), cls.one(), cls.zero())

    def __add__(self, p2):
        if self.is_inf():
            return p2
        if p2.is_inf():
            return self
        (x1, y1, z1), (x2, y2, z2) = self.pt, p2.pt
        z1_2, z2_2 = z1.sqr(), z2.sqr()
        T1, T2 = x1 * z2_2, x2 * z1_2
        T3, T4, T5 = T1 - T2, y1 * z2_2 * z2, y2 * z1_2 * z1
        T6, T7, T3_2 = T4 - T5, T1 + T2, T3.sqr()
        T8, T9 = T4 + T5, T7 * T3_2
        x3 = T6.sqr() - T9
        T10 = T9 - x3 * 2
        y3 = (T10 * T6 - T8 * T3_2 * T3) * _2_inv
        z3 = z1 * z2 * T3
        return ECC_Point(x3, y3, z3)

    def multiply(self, n):  # 算法一:二进制展开法
        if n in (0, 1):
            return self if n else self.zero()
        Q = self
        for i in bin(n)[3:]:
            Q = Q.double() + self if i == '1' else Q.double()
        return Q

    def __mul__(self, n):  # 算法三:滑动窗法
        k = bin(n)[2:]
        l, r = len(k), 5  # 滑动窗口为5效果较好
        if r >= l:  # 如果窗口大于k的二进制位数,则本算法无意义
            return self.multiply(n)
        P_ = {1: self, 2: self.double()}  # 保存P[j]值的字典
        for i in range(1, 1 << (r - 1)):
            P_[(i << 1) + 1] = P_[(i << 1) - 1] + P_[2]
        t = r
        while k[t - 1] != '1':
            t -= 1
        hj = int(k[:t], 2)
        Q, j = P_[hj], t
        while j < l:
            if k[j] == '0':
                Q = Q.double()
                j += 1
            else:
                t = min(r, l - j)
                while k[j + t - 1] != '1':
                    t -= 1
                hj = int(k[j:j + t], 2)
                Q = Q.multiply(1 << t) + P_[hj]
                j += t
        return Q

    def __rmul__(self, n):
        return self.__mul__(n)

    def __eq__(self, p2):
        (x1, y1, z1), (x2, y2, z2) = self.pt, p2.pt
        z1_2, z2_2 = z1.sqr(), z2.sqr()
        return x1 * z2_2 == x2 * z1_2 and y1 * z2_2 * z2 == y2 * z1_2 * z1

    def __neg__(self):
        x, y, z = self.pt
        return ECC_Point(x, -y, z)

    def __getitem__(self, item):
        return self.pt[item]

    def __repr__(self):
        return '%s%s' % (self.__class__.__name__, self.normalize())

    def __bytes__(self):
        return to_byte(self.normalize(), N_SIZE if type(self[0]) is FQ else None)

    def normalize(self):
        x, y, z = self.pt
        if not hasattr(self, 'normalize_tuple'):
            if z != z.one():
                z_inv = z.inv()
                z_inv_2 = z_inv.sqr()
                x, y = x * z_inv_2, y * z_inv_2 * z_inv
            self.normalize_tuple = (x.n, y.n) if type(x) is FQ else (x, y)
        return self.normalize_tuple

    def frobenius(self):
        x, y, z = self.pt
        return ECC_Point(x.conjugate(), y.conjugate(), z.conjugate() * alpha1)

    def frobenius2_neg(self):
        x, y, z = self.pt
        return ECC_Point(x, -y, z * alpha2)


FQ2_one, FQ2_zero = FQ2(1, 0), FQ2(0, 0)  # FQ2单位元、零元
FQ4_one, FQ4_zero = FQ4(FQ2_one, FQ2_zero), FQ4()  # FQ4单位元、零元
FQ12_one = FQ12(FQ4_one, FQ4_zero, FQ4_zero)  # FQ12单位元
P1 = ECC_Point(FQ(x_p1), FQ(y_p1))  # 群G1的生成元
P2 = ECC_Point(FQ2(*x_p2[::-1]), FQ2(*y_p2[::-1]))  # 群G2的生成元
_b1, _b2 = FQ(5), FQ2(0, 5)  # b2=βb=(1,0)*5
alpha1 = 0X3F23EA58E5720BDB843C6CFA9C08674947C5C86E0DDD04EDA91D8354377B698B  # -2^((q - 1)/12)
alpha2 = 0XF300000002A3A6F2780272354F8B78F4D5FC11967BE65334  # -2^((q - 1)/6)
alpha3 = 0X6C648DE5DC0A3F2CF55ACC93EE0BAF159F9D411806DC5177F5B21FD3DA24D011  # -2^((q - 1)/4)
alpha4 = 0XF300000002A3A6F2780272354F8B78F4D5FC11967BE65333  # -2^((q - 1)/3)
alpha5 = 0X2D40A38CF6983351711E5F99520347CC57D778A9F8FF4C8A4C949C7FA2A96686
_2_inv = 0X5B2000000151D378EB01D5A7FAC763A290F949A58D3D776DF2B7CD93F1A8A2BF  # 1/2
_3div2 = 0X5B2000000151D378EB01D5A7FAC763A290F949A58D3D776DF2B7CD93F1A8A2C0  # 3/2
R_ate_a_NAF = '0100000000000000000000000000000000000010001020200020200101000020'  # a=6t+2的二进制非相邻表示(2-NAF)(去首10)
hlen = 320  # 8 * ceil(5 * log(N, 2) / 32)
_t, _6t, _6t_3 = 0x600000000058F98A, 0X2400000000215D93C, 0X2400000000215D93F


# 输入系数值和点P,求线函数值
def g_value(a_tuple, P):
    (a0, a1, a4), (xP, yP) = a_tuple, P
    return FQ12(FQ4(a0, a1 * yP), FQ4_zero, FQ4(a4 * xP, FQ2_zero))


# 获取线函数g T,Q(P)的系数值(分母在最终模幂时值为1,可消去)
def get_g_a_tuple(T, Q):
    (xT, yT, zT), (xQ, yQ, zQ) = T, Q
    zT_2, zQ_2 = zT.sqr(), zQ.sqr()
    zQ_3, t1 = zQ * zQ_2, (xT * zQ_2 - xQ * zT_2) * zT * zQ
    a1, t2 = t1 * zQ_3, (yT * zQ_3 - yQ * zT * zT_2) * zQ
    a0, a4 = t1 * yQ - t2 * xQ, t2 * zQ_2
    return a0, a1, a4


# 线函数g T,Q(P),求过点T和Q的直线在P上的值
def g(T, Q, nP):
    return g_value(get_g_a_tuple(T, Q), nP)


# 获取线函数g T,T(P)的系数值(分母在最终模幂时值为1,可消去),利用中间值完成倍点计算
def get_g2_a_tuple(T):
    x, y, z = T
    _z2, _3x2, _2y = z.sqr(), x.sqr() * 3, y * 2
    _4y2, _2yz = _2y.sqr(), _2y * z
    a1, a0, a4, _4xy2 = _z2 * _2yz, _4y2 * _2_inv - _3x2 * x, _3x2 * _z2, x * _4y2
    x3 = _3x2.sqr() - _4xy2 * 2
    y3 = _3x2 * (_4xy2 - x3) - _4y2.sqr() * _2_inv
    return (a0, a1, a4), ECC_Point(x3, y3, _2yz)


# 线函数g T,T(P),求过点T的切线在P上的值,利用中间值完成倍点计算
def g2(T, nP):
    a_tuple, double_T = get_g2_a_tuple(T)
    return g_value(a_tuple, nP), double_T


# BN曲线上R_ate对的计算
def e(P, Q):
    nQ, nP_xy = -Q, (-P).normalize()
    f, T = g2(Q, nP_xy)
    for ai in R_ate_a_NAF:
        new_g, T = g2(T, nP_xy)
        f = f.sqr() * new_g
        if ai == '1':
            f, T = f * g(T, Q, nP_xy), T + Q
        elif ai == '2':  # 用2代替-1
            f, T = f * g(T, nQ, nP_xy), T + nQ
    Q1, nQ2 = Q.frobenius(), Q.frobenius2_neg()
    return final_exp(f * g(T, Q1, nP_xy) * g(T + Q1, nQ2, nP_xy))


# 最终模幂
def final_exp(f):
    m = f.frobenius6() * f.inv()  # f^(p^6 - 1)
    s = m.frobenius2() * m  # m^(p^2 + 1)
    # 困难部分 s^(p^3 + (6t^2+1)p^2 + (-36t^3-18t^2-12t+1)p + (-36t^3-30t^2-18t-2))
    s_6t = s ** _6t
    s_6t2 = s_6t ** _t
    s_36t3_18t2_12t, a2 = s_6t2 ** _6t_3 * s_6t.sqr2(), s_6t2 * s
    a1, a0 = s_36t3_18t2_12t.frobenius6() * s, (s_36t3_18t2_12t * s_6t * a2.sqr2()).frobenius6()
    return s.frobenius3() * a2.frobenius2() * a1.frobenius() * a0


# 获取线函数的系数值序列
def get_a_list(Q):
    a_tuple, T = get_g2_a_tuple(Q)
    a_list, nQ = [a_tuple], -Q
    for ai in R_ate_a_NAF:
        a_tuple, T = get_g2_a_tuple(T)
        a_list.append(a_tuple)
        if ai != '0':
            a_list.append(get_g_a_tuple(T, nQ if ai == '2' else Q))
            T = T + (nQ if ai == '2' else Q)
    Q1, nQ2 = Q.frobenius(), Q.frobenius2_neg()
    return a_list + [get_g_a_tuple(T, Q1), get_g_a_tuple(T + Q1, nQ2)]


def e_fast(P, a_list):
    nP_xy = (-P).normalize()
    f, i = g_value(a_list[0], nP_xy), 1
    for ai in R_ate_a_NAF:
        f, i = f.sqr() * g_value(a_list[i], nP_xy), i + 1
        if ai != '0':
            f, i = f * g_value(a_list[i], nP_xy), i + 1
    return final_exp(f * g_value(a_list[i], nP_xy) * g_value(a_list[-1], nP_xy))


# 获取Comb固定基的预计算表(256个FQ12的列表)
def get_comb_list(n):
    comb_list = [FQ12_one, n]
    for i in range(7):
        tmp = comb_list[2**i]
        for _ in range(32):
            tmp = tmp.sqr2()
        comb_list += [tmp * c for c in comb_list]
    return comb_list


# Comb固定基的幂运算
def comb_pow(r, comb_list):
    r_bin, res = '0' * (256 - r.bit_length()) + bin(r)[2:], FQ12_one
    for i in range(32):
        a = int(''.join(r_bin[j] for j in range(i, 256, 32)), 2)
        res = comb_list[a] if res is FQ12_one else res.sqr2() * comb_list[a]
    return res


# 获取固定点乘的预计算表(32行256列的椭圆曲线点矩阵)
def get_kP_list(P):
    one, kP_list = P, []
    for i in range(32):
        line_list = [0, one]  # O, P
        for j in range(1, 128):
            line_list.append(line_list[j].double())  # 2j·P
            line_list.append(line_list[-1] + one)  # (2j+1)·P
        kP_list.append(line_list)
        one = line_list[128].double() if i < 31 else 0
    return kP_list


# 使用预计算表的快速点乘
def fast_kG(k, kP_list):
    P_list = [kP_list[i][byte] for i, byte in enumerate(k.to_bytes(32, byteorder='little')) if byte]
    return sum(P_list[1:], P_list[0])


# SM9算法(GB_T 38635.2-2020) 5.3.6定义的密钥派生函数
# Z为bytes类型,klen表示输出密钥比特长度(8的倍数);输出为bytes类型
def KDF(Z, klen=KEY_LEN):
    ksize, K = klen >> 3, bytearray()
    for ct in range(1, ceil(ksize / HASH_SIZE) + 1):
        K.extend(sm3(Z + to_byte(ct, 4)))
    return K[:ksize]


# SM9算法(GB_T 38635.2-2020) 5.3.2.2和5.3.2.3定义的密码函数
def H(i, Z):
    Ha = to_int(KDF(to_byte(i, 1) + Z, hlen))
    return Ha % (N - 1) + 1


# SM9算法(GB_T 38635.2-2020) 5.3.5定义的消息认证码函数
def MAC(K2, Z):
    return sm3(Z + K2)


class SM9:  # SM9算法(GB_T 38635.2-2020)
    def __init__(self, ID='', ds=None, Ppub_s=None, de=None, Ppub_e=None, hid_s=1, hid_e=3, ks=None, ke=None):
        self.ID, self.ID_byte, self.hid_s_byte, self.hid_e_byte = ID, to_byte(ID), to_byte(hid_s, 1), to_byte(hid_e, 1)
        if ks:  # 作为密钥生成中心,给定签名主私钥(若要随机生成,可指定ks=-1)
            self.ks = ks if 0 < ks < N else randrange(1, N)
            self.Ppub_s = fast_kG(self.ks, _kP2)
        if ke:  # 作为密钥生成中心,给定加密主私钥(若要随机生成,可指定ke=-1)
            self.ke = ke if 0 < ke < N else randrange(1, N)
            self.Ppub_e = fast_kG(self.ke, _kP1)
        if ds and Ppub_s:  # 作为用户,给定用户签名私钥和签名主公钥
            self.k_ds_list, self.Ppub_s, self.gs = get_kP_list(ds), Ppub_s, e(P1, Ppub_s)
            self.gs_comb_list = get_comb_list(self.gs)
        if de and Ppub_e:  # 作为用户,给定用户加密私钥和加密主公钥
            self.de_a_list, self.Ppub_e, self.ge = get_a_list(de), Ppub_e, e(Ppub_e, P2)
            self.ge_comb_list = get_comb_list(self.ge)

    def KGC_gen_user(self, ID):
        ID_byte, ds, Ppub_s, de, Ppub_e = to_byte(ID), None, None, None, None
        if hasattr(self, 'ks'):
            t1 = (H(1, ID_byte + self.hid_s_byte) + self.ks) % N
            if t1 == 0:  # 需重新产生签名主密钥,并更新所有用户的签名密钥
                return False
            t2 = self.ks * mod_inv(t1, N) % N
            ds, Ppub_s = fast_kG(t2, _kP1), self.Ppub_s  # 用户签名私钥和签名主公钥
        if hasattr(self, 'ke'):
            t1 = (H(1, ID_byte + self.hid_e_byte) + self.ke) % N
            if t1 == 0:  # 需重新产生加密主密钥,并更新所有用户的加密密钥
                return False
            t2 = self.ke * mod_inv(t1, N) % N
            de, Ppub_e = fast_kG(t2, _kP2), self.Ppub_e  # 用户加密私钥和加密主公钥
        return SM9(ID, ds, Ppub_s, de, Ppub_e, self.hid_s_byte, self.hid_e_byte)

    # 6.2 数字签名生成算法
    def sign(self, M, r=None, outbytes=True):
        l = 0
        while l == 0:
            r = r if r else randrange(1, N)  # A2
            w = bytes(self.gs_pow(r))  # A3
            h = H(2, to_byte(M) + w)  # A4
            l = (r - h) % N  # A5
        S = fast_kG(l, self.k_ds_list)  # A6
        return to_byte([h, S]) if outbytes else (h, S)

    # 6.4 数字签名验证算法
    def verify(self, ID, M_, sig):
        h_, S_ = (to_int(sig[:N_SIZE]), ECC_Point.from_byte(sig[N_SIZE:])) if type(sig) is bytes else sig
        if not 0 < h_ < N or not S_ or not S_.is_on_curve():  # B1、B2
            return False
        t = self.gs_pow(h_)  # B4
        h1 = H(1, to_byte(ID) + self.hid_s_byte)  # B5
        P = fast_kG(h1, _kP2) + self.Ppub_s  # B6
        u = e(S_, P)  # B7
        w_ = bytes(u * t)  # B8
        h2 = H(2, to_byte(M_) + w_)  # B9
        return h_ == h2

    # A 发起协商(也可用作B生成rB、RB;outbytes=True时输出bytes)
    # 7.2 密钥交换协议 A1-A3
    def agreement_initiate(self, IDB, r=None, outbytes=True):
        QB = fast_kG(H(1, to_byte(IDB) + self.hid_e_byte), _kP1) + self.Ppub_e  # A1
        rA = r if r else randrange(1, N)  # A2
        RA = QB * rA  # A3
        return rA, bytes(RA) if outbytes else RA

    # B 响应协商(option=True时计算选项部分)
    # 7.2 密钥交换协议 B1-B6
    def agreement_response(self, RA, IDA, option=False, rB=None, klen=KEY_LEN, outbytes=True):
        RA = ECC_Point.from_byte(RA) if type(RA) is bytes else RA
        if not RA or not RA.is_on_curve():  # B4
            return False, 'RA不属于椭圆曲线群G1'
        rB, RB = self.agreement_initiate(IDA, rB, outbytes)  # B1-B3
        g1, g2 = self.e_de(RA), bytes(self.ge_pow(rB))  # B4
        g1, g3 = bytes(g1), bytes(g1 ** rB)  # B4
        tmp_byte = to_byte([IDA, self.ID_byte, RA, RB])
        SKB = KDF(tmp_byte + g1 + g2 + g3, klen)  # B5
        if not option:
            return True, (RB, SKB)
        self.tmp_byte2 = g1 + sm3(g2 + g3 + tmp_byte)
        SB = sm3(to_byte(0x82, 1) + self.tmp_byte2)  # B6(可选部分)
        return True, (RB, SKB, SB)

    # A 协商确认
    # 7.2 密钥交换协议 A5-A8
    def agreement_confirm(self, rA, RA, RB, IDB, SB=None, option=False, klen=KEY_LEN):
        RB = ECC_Point.from_byte(RB) if type(RB) is bytes else RB
        if not RB or not RB.is_on_curve():  # A5
            return False, 'RB不属于椭圆曲线群G1'
        g1_, g2_ = bytes(self.ge_pow(rA)), self.e_de(RB)  # A5
        g2_, g3_ = bytes(g2_), bytes(g2_ ** rA)  # A5
        tmp_byte = to_byte([self.ID_byte, IDB, RA, RB])
        if option and SB:  # A6(可选部分)
            tmp_byte2 = g1_ + sm3(g2_ + g3_ + tmp_byte)
            S1 = sm3(to_byte(0x82, 1) + tmp_byte2)
            if S1 != SB:
                return False, 'S1 != SB'
        SKA = KDF(tmp_byte + g1_ + g2_ + g3_, klen)  # A7
        if not option or not SB:
            return True, SKA
        SA = sm3(to_byte(0x83, 1) + tmp_byte2)  # A8
        return True, (SKA, SA)

    # B 协商确认(可选部分)
    # 7.2 密钥交换协议 B8
    def agreement_confirm2(self, SA):
        if not hasattr(self, 'tmp_byte2'):
            return False, 'step error'
        S2 = sm3(to_byte(0x83, 1) + self.tmp_byte2)
        if S2 == SA:
            del self.tmp_byte2
            return True, ''
        return False, 'S2 != SA'

    # 8.2 密钥封装算法
    def encaps(self, IDB, klen, r=None, outbytes=True):
        K = bytes()
        while K == bytes(len(K)):
            r, C = self.agreement_initiate(IDB, r, outbytes)  # A1-A3
            w = bytes(self.ge_pow(r))  # A5
            K = KDF(to_byte([C, w, IDB]), klen)
        return K, C

    # 8.4 密钥封装算法
    def decaps(self, C, klen):
        C = ECC_Point.from_byte(C) if type(C) is bytes else C
        if not C or not C.is_on_curve():  # B1
            return False, 'C不属于椭圆曲线群G1'
        w_ = bytes(self.e_de(C))  # B2
        K_ = KDF(to_byte([C, w_, self.ID_byte]), klen)  # B3
        return (True, K_) if K_ != bytes(len(K_)) else (False, 'K为全0比特串')

    # 9.2 加密算法
    def encrypt(self, IDB, M, r=None, outbytes=True):
        M = to_byte(M)
        K, C1 = self.encaps(IDB, (len(M) << 3) + K2_len, r, outbytes)  # A1-A6.a.1
        K1, K2 = K[:len(M)], K[len(M):]  # A6.a.1
        C2 = bytes(M[i] ^ K1[i] for i in range(len(M)))  # A6.a.2
        C3 = MAC(K2, C2)  # A7
        return to_byte([C1, C3, C2]) if outbytes else (C1, C3, C2)

    # 9.4 解密算法
    def decrypt(self, C):
        C3_start, C3_end = N_SIZE << 1, (N_SIZE << 1) + HASH_SIZE
        C1, C3, C2 = (C[:C3_start], C[C3_start:C3_end], C[C3_end:]) if type(C) is bytes else C
        res, K_ = self.decaps(C1, (len(C2) << 3) + K2_len)  # B1-B3.a.1
        if not res:
            return False, K_.replace('C', 'C1')
        K1_, K2_ = K_[:len(C2)], K_[len(C2):]  # B3.a.1
        if K1_ == bytes(len(K_)):
            return False, 'K1\'为全0比特串'
        u = MAC(K2_, C2)  # B4
        if u != C3:
            return False, 'u != C3'
        return True, bytes(C2[i] ^ K1_[i] for i in range(len(C2)))  # B3.a.2

    def e_de(self, P):
        return e_fast(P, self.de_a_list)

    def gs_pow(self, r):
        return comb_pow(r, self.gs_comb_list)

    def ge_pow(self, r):
        return comb_pow(r, self.ge_comb_list)


_SM9kG_file = 'hggm/SM9_kG.bin'  # 预计算数据文件的位置
_kP1, _kP2 = [], []  # P1、P2点的预计算表
if os.path.exists(_SM9kG_file):
    with open(_SM9kG_file, 'rb') as f:  # 读取预计算数据文件
        data = f.read()
        G1_size, G2_size = N_SIZE << 1, N_SIZE << 2  # G1点坐标字节数、G2点坐标字节数
        P1_line, line = 255 * G1_size, 255 * (G1_size + G2_size)  # 一行G1点坐标字节数、一行总字节数
        for i in range(0, N_SIZE * line, line):
            _kP1.append([0] + [ECC_Point.from_byte(data[j:j + G1_size]) for j in range(i, i + P1_line, G1_size)])
            _kP2.append([0] + [ECC_Point.from_byte(data[j:j + G2_size]) for j in range(i + P1_line, i + line, G2_size)])
else:  # 预计算数据文件不存在
    _kP1, _kP2 = get_kP_list(P1), get_kP_list(P2)  # 生成P1、P2点的预计算表
    with open(_SM9kG_file, 'wb') as f:  # 将预计算表写入二进制文件
        f.write(b''.join(map(bytes, [P for x, y in zip(_kP1, _kP2) for P in x[1:] + y[1:]])))

完善了测试代码,创建KGC的代码比上版稍有变动:

IDA, IDB, message = 'Alice', 'Bob', 'Chinese IBS standard'
    kgc = SM9(ks=0x130E78459D78545CB54C587E02CF480CE0B66340F319F348A1D5B1F2DC5F4,
                 ke=0x2E65B0762D042F51F0D23542B13ED8CFA2E9A0E7206361E013A283905E31F)
    sm9_A, sm9_B = kgc.KGC_gen_user(IDA), kgc.KGC_gen_user(IDB)
    assert bytes(sm9_A.gs).hex().swapcase().endswith('F0F071D7D284FCFB')
    print("-----------------test sign and verify---------------")
    r = 0x033C8616B06704813203DFD00965022ED15975C662337AED648835DC4B1CBE
    signature = sm9_A.sign(message, r)
    assert signature.hex().swapcase().endswith('827CC2ACED9BAA05')
    assert sm9_B.verify(IDA, message, signature)
    print("success")

    print("-----------------test key agreement---------------")
    rA = 0x5879DD1D51E175946F23B1B41E93BA31C584AE59A426EC1046A4D03B06C8
    rA, RA = sm9_A.agreement_initiate(IDB, rA)  # A发起协商
    # A将RA发送给B
    rB = 0x018B98C44BEF9F8537FB7D071B2C928B3BC65BD3D69E1EEE213564905634FE
    res, content = sm9_B.agreement_response(RA, IDA, True, rB)  # B响应协商
    if not res:
        print('B报告协商错误:', content)
        return
    RB, SKB, SB = content
    # B将RB、SB发送给A
    res, content = sm9_A.agreement_confirm(rA, RA, RB, IDB, SB, True)  # A协商确认
    if not res:
        print('A报告协商错误:', content)
        return
    SKA, SA = content
    assert SKA.hex().swapcase() == '68B20D3077EA6E2B825315836FDBC633'
    # A将SA发送给B
    res, content = sm9_B.agreement_confirm2(SA)  # B协商确认
    if not res:
        print('B报告协商错误:', content)
        return
    assert SKA == SKB
    print("success")

    print("-----------------test encrypt and decrypt---------------")
    message = 'Chinese IBE standard'
    kgc = SM9(ke=0x01EDEE3778F441F8DEA3D9FA0ACC4E07EE36C93F9A08618AF4AD85CEDE1C22)
    sm9_A, sm9_B = kgc.KGC_gen_user(IDA), kgc.KGC_gen_user(IDB)
    C = sm9_A.encrypt(IDB, message, 0xAAC0541779C8FC45E3E2CB25C12B5D2576B2129AE8BB5EE2CBE5EC9E785C)
    assert C.hex().swapcase().endswith('378CDD5DA9513B1C')
    res, content = sm9_B.decrypt(C)
    if not res:
        print('解密错误:', content)
        return
    assert message == content.decode()
    print("success")

运行结果如下,可见实际算法比上版有20%~4倍提升不等:

以上全部代码在:hggm - 国密算法 SM2 SM3 SM4 SM9 ZUC Python实现完整代码: 国密算法 SM2公钥密码 SM3杂凑算法 SM4分组密码 SM9标识密码 ZUC序列密码 Python代码完整实现 效率高于所有公开的Python国密算法库 (gitee.com)

hggm国密算法Python库自2022年3月开始开发,2022年4月首次公开,目前已经包含SM2、SM3、SM4、SM9、ZUC的慢速版和快速版,基本完善了。出于个人研究学习的兴趣,纰漏在所难免,可继续改进提升的地方还很多,望各位不吝赐教,我会持续更新优化。从一开始就坚持完全开源,希望能帮到大家,也希望能以个人之所学为网安事业尽绵薄之力。

但愿这不止是完结,而是全新的开始。

;