0. 2023年11月更新
请使用第四节的新方法,不需要修改代码,更加简单。
1.错误尝试
在训练YOLOv8的时候,因为开太多其他程序,导致在100多次的时候崩溃,查询网上相关知识如何接着训练,在yolo5中把resume改成True就可以。
在yolov8中也这样尝试,将ultralytics/yolo/cfg/default.yaml中的resume改成True发现并没有作用,感觉yolov8代码还是有很多bug
2.成功的方法
2.1 ultralytics/yolo/engine/model.py
打开ultralytics/yolo/engine/model.py代码,找到train方法,如下
将self.trainer.model = self.model注释掉
def train(self, **kwargs):
"""
Trains the model on a given dataset.
Args:
**kwargs (Any): Any number of arguments representing the training configuration.
"""
overrides = self.overrides.copy()
overrides.update(kwargs)
if kwargs.get("cfg"):
LOGGER.info(f"cfg file passed. Overriding default params with {kwargs['cfg']}.")
overrides = yaml_load(check_yaml(kwargs["cfg"]), append_filename=False)
overrides["task"] = self.task
overrides["mode"] = "train"
if not overrides.get("data"):
raise AttributeError("Dataset required but missing, i.e. pass 'data=coco128.yaml'")
if overrides.get("resume"):
overrides["resume"] = self.ckpt_path
self.trainer = self.TrainerClass(overrides=overrides)
# if not overrides.get("resume"): # manually set model only if not resuming
# self.trainer.model = self.trainer.get_model(weights=self.model if self.ckpt else None, cfg=self.model.yaml)
# self.model = self.trainer.model
#下面一行代码在正常情况下需要开启
# self.trainer.model = self.model
self.trainer.train()
# update model and cfg after training
if RANK in {0, -1}:
self.model, _ = attempt_load_one_weight(str(self.trainer.best))
self.overrides = self.model.args
2.2 ultralytics/yolo/engine/trainer.py
找到check_resume和resume_training方法
在check_resume方法里面将resume=中断地方的last.pt
在resume_training里面将ckpt=中断地方的last.pt
def check_resume(self):
# resume = self.args.resume
resume = 'runs/detect/train49/weights/last.pt';
if resume:
try:
last = Path(
check_file(resume) if isinstance(resume, (str,
Path)) and Path(resume).exists() else get_latest_run())
self.args = get_cfg(attempt_load_weights(last).args)
self.args.model, resume = str(last), True # reinstate
except Exception as e:
raise FileNotFoundError("Resume checkpoint not found. Please pass a valid checkpoint to resume from, "
"i.e. 'yolo train resume model=path/to/last.pt'") from e
self.resume = resume
def resume_training(self, ckpt):
ckpt = torch.load('runs/detect/train49/weights/last.pt')
if ckpt is None:
return
best_fitness = 0.0
start_epoch = ckpt['epoch'] + 1
if ckpt['optimizer'] is not None:
self.optimizer.load_state_dict(ckpt['optimizer']) # optimizer
best_fitness = ckpt['best_fitness']
if self.ema and ckpt.get('ema'):
self.ema.ema.load_state_dict(ckpt['ema'].float().state_dict()) # EMA
self.ema.updates = ckpt['updates']
if self.resume:
assert start_epoch > 0, \
f'{self.args.model} training to {self.epochs} epochs is finished, nothing to resume.\n' \
f"Start a new training without --resume, i.e. 'yolo task=... mode=train model={self.args.model}'"
LOGGER.info(
f'Resuming training from {self.args.model} from epoch {start_epoch + 1} to {self.epochs} total epochs')
if self.epochs < start_epoch:
LOGGER.info(
f"{self.model} has been trained for {ckpt['epoch']} epochs. Fine-tuning for {self.epochs} more epochs.")
self.epochs += ckpt['epoch'] # finetune additional epochs
self.best_fitness = best_fitness
self.start_epoch = start_epoch
3.运行代码
没有在中断的train49训练,新开了一个文件夹,但是实现了功能
重要提示
训练完成后请把所有代码复原!!!
训练完成后请把所有代码复原!!!
训练完成后请把所有代码复原!!!
4. 评论区方法
官方给的代码,使用的比较新的代码,老代码没有尝试过,现在很多东西都可以在官网找到解决办法!
使用python代码如下
from ultralytics import YOLO
# Load a model
model = YOLO('path/to/last.pt') # load a partially trained model
# Resume training
results = model.train(resume=True)
使用命令行代码如下:
# Resume an interrupted training
yolo train resume model=path/to/last.pt
测试如下图,直接就在原文件夹接着训练: