Bootstrap

关于迁移学习的方法

目录

1. 迁移学习介绍

2. 迁移学习方式

2.1 载入所有参数

2.2 载入参数,只训练最后的参数

2.3 载入后,添加新层,对新层训练

2.3.1 查看网络结构

2.3.2 更改分类层 

2.3.3 自定义网络 resnet 的演示

3.  查看网络的参数值


1. 迁移学习介绍

迁移学习可以帮助我们快速实现一个网络

通过载入预训练好的模型,然后针对不同的项目进行微调,比从头训练的网络收敛要快得多

常见的有下面几种方式:

 

2. 迁移学习方式

下面对上面三种的方法进行实现

迁移学习:需要保证自定义的模型和预训练的模型一样,否则载入权重的位置会对应不上

2.1 载入所有参数

测试代码用的是resnet网络:

# 构建网络
net = resnet34()        # 不需要设定参数
pre_model = './resnet_pre_model.pth'        # 预训练权重
missing_keys,unexpected_keys = net.load_state_dict(torch.load((pre_model)),strict=False)

这样,就可以载入预训练模型,然后再进行训练了。

其实这个就是权重的初始化,平时用的是随机的初始化,现在用的是别人训练好的,可以实际应用的初始化

2.2 载入参数,只训练最后的参数

这里用torchvision演示:

from torchvision.models import AlexNet


# Alex
model = AlexNet(num_classes=10)
'''
AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=4096, out_features=10, bias=True)
  )
)
'''

因为这里使用的是pytorch的反向传播,而是否可以反向传播就是这个参数的requires_grad 是否等于True 。只训练最后参数的话,只需要把前面参数的requires_grad设定为False,冻结就行了

显示网络的参数:

for name,para in model.named_parameters():
    print(name)
'''features.0.weight
features.0.bias
features.3.weight
features.3.bias
features.6.weight
features.6.bias
features.8.weight
features.8.bias
features.10.weight
features.10.bias
classifier.1.weight
classifier.1.bias
classifier.4.weight
classifier.4.bias
classifier.6.weight
classifier.6.bias
'''

这里我们只需要将特征提取层,也就是卷积层冻结,然后全连接层不变就行了

操作如下:

for name,para in model.named_parameters():
    if 'features' in name:
        para.requires_grad = False

这里冻结和没冻结前做个对比:

冻结前:

 冻结后:

 

优化器中也要改变,需要过滤掉不需要反向传播的参数

优化器中过滤冻结的参数:

from torchvision.models import AlexNet
from torch import optim


# Alex
model = AlexNet(num_classes=10)

for name,para in model.named_parameters():
    if 'features' in name:
        para.requires_grad = False

para = [p for p in model.parameters() if p.requires_grad]
optimizer = optim.Adam(para,lr=0.001)
'''
[Parameter containing:
tensor([[ 0.0024,  0.0097, -0.0038,  ...,  0.0044,  0.0014,  0.0096],
        [-0.0078, -0.0014,  0.0031,  ..., -0.0010,  0.0051,  0.0012],
        [-0.0088,  0.0054, -0.0075,  ..., -0.0026,  0.0085, -0.0103],
        ...,
        [-0.0090,  0.0065,  0.0046,  ..., -0.0077,  0.0068, -0.0092],
        [ 0.0051,  0.0075,  0.0015,  ..., -0.0072, -0.0044,  0.0077],
        [ 0.0060,  0.0079,  0.0010,  ...,  0.0066,  0.0044, -0.0006]],
       requires_grad=True), Parameter containing:
tensor([-0.0072,  0.0021, -0.0079,  ..., -0.0045, -0.0031,  0.0052],
       requires_grad=True), Parameter containing:
tensor([[-7.3999e-03,  7.5480e-03, -7.0330e-03,  ..., -2.3227e-03,
         -1.0509e-03, -1.0634e-02],
        [ 1.4005e-02,  1.0355e-02,  4.3921e-03,  ...,  5.6021e-03,
         -5.4067e-03,  8.2123e-03],
        [ 1.1953e-02,  7.0178e-03,  6.5284e-05,  ...,  9.9544e-03,
          1.2050e-02, -2.8193e-03],
        ...,
        [-1.2271e-02,  2.8609e-03,  1.5023e-02,  ..., -1.2590e-02,
          3.6282e-03, -1.5037e-03],
        [-1.1178e-02, -6.8283e-03, -1.5380e-02,  ...,  9.1631e-03,
         -8.2415e-04, -1.0820e-02],
        [ 3.5226e-03,  8.1489e-04,  1.4744e-02,  ...,  3.8180e-03,
          7.2305e-03, -4.8745e-03]], requires_grad=True), Parameter containing:
tensor([-0.0024,  0.0106,  0.0019,  ..., -0.0047, -0.0113,  0.0155],
       requires_grad=True), Parameter containing:
tensor([[-8.0021e-03, -5.3036e-03, -7.7326e-03,  ..., -6.2924e-03,
          1.0251e-02, -1.3929e-02],
        [-1.0562e-02,  1.5300e-02, -1.3457e-02,  ...,  4.8542e-03,
         -1.2721e-02, -2.1716e-03],
        [ 1.2303e-02,  3.4304e-03, -1.3099e-02,  ..., -6.2512e-03,
         -7.1608e-03, -5.3249e-03],
        ...,
        [ 1.4954e-02, -9.6393e-03,  1.3907e-02,  ...,  2.4139e-03,
         -2.5765e-03, -4.9496e-05],
        [ 7.0794e-03, -5.5391e-03, -1.1280e-02,  ...,  2.3952e-03,
          4.2578e-03,  7.0075e-03],
        [ 1.0447e-02, -8.3530e-03,  5.4398e-03,  ..., -1.4187e-03,
          1.2113e-02,  1.0778e-02]], requires_grad=True), Parameter containing:
tensor([-0.0004, -0.0154, -0.0008, -0.0101,  0.0106,  0.0130, -0.0051,  0.0056,
        -0.0152, -0.0006], requires_grad=True)]
'''

2.3 载入后,添加新层,对新层训练

预训练的模型,分类的结果可能不是我们需要的,例如预训练是1000分类,我们做的是10分类

所以这里,需要将最后一层改变

注:这里是将最后一个分类层改变,没有在原有的基础上添加新层

2.3.1 查看网络结构

需要改变的话,那肯定得需要查看原有的网络结构

from torchvision.models import AlexNet


# Alex
model = AlexNet(num_classes=10)
'''
AlexNet(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(11, 11), stride=(4, 4), padding=(2, 2))
    (1): ReLU(inplace=True)
    (2): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (3): Conv2d(64, 192, kernel_size=(5, 5), stride=(1, 1), padding=(2, 2))
    (4): ReLU(inplace=True)
    (5): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
    (6): Conv2d(192, 384, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (7): ReLU(inplace=True)
    (8): Conv2d(384, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (9): ReLU(inplace=True)
    (10): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): MaxPool2d(kernel_size=3, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(6, 6))
  (classifier): Sequential(
    (0): Dropout(p=0.5, inplace=False)
    (1): Linear(in_features=9216, out_features=4096, bias=True)
    (2): ReLU(inplace=True)
    (3): Dropout(p=0.5, inplace=False)
    (4): Linear(in_features=4096, out_features=4096, bias=True)
    (5): ReLU(inplace=True)
    (6): Linear(in_features=4096, out_features=10, bias=True)
  )
)
'''

这里找网络特定层就是逐个遍历的方法

例如这里要找到最后一个分类层,首先它在classifier的6里面,然后classifier又在Alexnet下面

记住,这里的Alexnet就是自己实例化的网络,这里是model

所以这里要找到最后一个Linear的方法就是,model.classifier[6]

2.3.2 更改分类层 

那更改的话,直接将out_feartures更改就行了,也就是model.classifier[6].out_features = 10

 

当然,也可以用自定义的Linear 替换掉,两种方法是一样的

 

在这里基础上,进行冻结,就和之前的操作一样的,这里不再演示

2.3.3 自定义网络 resnet 的演示

首先,一定要查看网络的结构,因为同一个网络,可能实现方式是不一样的

from model import resnet34


net = resnet34()
print(net)
'''
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (3): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (3): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (4): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (5): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (2): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU()
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=512, out_features=1000, bias=True)
)
'''

注意看,这里最后一层是fc,而不是之前的classifier

所以更改最后一层应该这样实现

 

更改中间的卷积层为:

net = resnet34()
net.layer2[0].conv1 = nn.Conv2d(64,256,kernel_size=3,stride=1)

之前的网络:

更改之后的:

3.  查看网络的参数值

只需要在之前的索引后,加一个权重或者偏置就行了

 

或者利用上面冻结的方法也可以

 

感兴趣的话可以自己试试

;