提取视频的光流并使用灰度图可视化
import cv2
import numpy as np
import pickle
import os
def compute_tvl1_optical_flow(video_path):
# 创建视频捕获对象
cap = cv2.VideoCapture(video_path)
ret, frame1 = cap.read()
if not ret:
print("Failed to read video")
return None # 返回None,表示无法读取视频
# 将第一帧转换为灰度
prvs = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
# 创建TVL1光流对象
optical_flow = cv2.optflow.DualTVL1OpticalFlow_create()
# 初始化用于存储光流数据的列表
flows = []
# 读取视频帧并计算光流
while True:
ret, frame2 = cap.read()
if not ret:
break
# 将当前帧转换为灰度
next = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# 计算光流
flow = optical_flow.calc(prvs, next, None)
# 将光流数据添加到列表中
flows.append(flow)
# 更新前一帧
prvs = next
cap.release()
# 返回光流数据列表
return flows
def save_optical_flows(flows, filepath):
with open(filepath, 'wb') as file:
pickle.dump(flows, file)
def draw_gray(flow, scale=1, gamma=0.1):
# 计算每个像素点的速度大小
magnitude = np.sqrt(flow[:, :, 0] ** 2 + flow[:, :, 1] ** 2)
# 应用gamma校正来增强低亮度区域的可视化
magnitude = np.power(magnitude, gamma)
# 将速度大小归一化到0-255的范围
normalized_mag = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
# 将浮点数转换为8-bit整数,并调整亮度
gray_img = np.uint8(normalized_mag * scale)
return gray_img
# 使用函数
video_path = '/home/yunchuan/video_features-master/sample/v_ZNVhz7ctTq0.mp4'
output_dir = '/home/yunchuan/video_features-master/sample/flow_images/'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
flows = compute_tvl1_optical_flow(video_path)
if flows is not None:
print("Successfully computed optical flows.")
save_optical_flows(flows, '/home/yunchuan/video_features-master/sample/flows.pkl') # 保存光流数据
for i, flow in enumerate(flows):
img = draw_gray(flow)
flow_image_path = os.path.join(output_dir, f'gray_flow_{i}.png')
cv2.imwrite(flow_image_path, img) # 保存光流图像
cv2.destroyAllWindows()
else:
print("Failed to compute optical flows.")
计算两张图片之间的光流并使用灰度图可视化
import cv2
import numpy as np
import os
def calculate_optical_flow(image1_path, image2_path):
# 读取两张图片
frame1 = cv2.imread(image1_path)
frame2 = cv2.imread(image2_path)
if frame1 is None or frame2 is None:
print("Error loading images!")
return None
# 检查并调整两张图片的尺寸,确保它们大小相同
h1, w1 = frame1.shape[:2]
h2, w2 = frame2.shape[:2]
h = min(h1, h2)
w = min(w1, w2)
h=180
w=280
# 将图片大小调整为最小的共同尺寸
frame1 = cv2.resize(frame1, (w, h))
frame2 = cv2.resize(frame2, (w, h))
# 将图片转换为灰度
prvs = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY)
next = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# 创建TVL1光流对象
optical_flow = cv2.optflow.DualTVL1OpticalFlow_create()
# 计算两张图片之间的光流
flow = optical_flow.calc(prvs, next, None)
return flow
def draw_gray(flow, scale=1, gamma=0.1):
# 计算每个像素点的速度大小
magnitude = np.sqrt(flow[:, :, 0] ** 2 + flow[:, :, 1] ** 2)
# 应用gamma校正来增强低亮度区域的可视化
magnitude = np.power(magnitude, gamma)
# 将速度大小归一化到0-255的范围
normalized_mag = cv2.normalize(magnitude, None, 0, 255, cv2.NORM_MINMAX)
# 将浮点数转换为8-bit整数,并调整亮度
gray_img = np.uint8(normalized_mag * scale)
return gray_img
# 指定两张图片的路径
image1_path = '/home/yunchuan/video_features-master/sample_images/image1.jpg'
image2_path = '/home/yunchuan/video_features-master/sample_images/image2.jpg'
# 输出路径
output_dir = '/home/yunchuan/video_features-master/sample_images/'
if not os.path.exists(output_dir):
os.makedirs(output_dir)
# 计算光流
flow = calculate_optical_flow(image1_path, image2_path)
if flow is not None:
# 可视化光流为灰度图
gray_flow_image = draw_gray(flow)
gray_flow_image_path = os.path.join(output_dir, 'optical_flow_visualization.png')
cv2.imwrite(gray_flow_image_path, gray_flow_image)
print(f"Optical flow visualization saved to {gray_flow_image_path}")
# 保存原始光流数据
raw_flow_path = os.path.join(output_dir, 'raw_optical_flow.npy')
np.save(raw_flow_path, flow)
print(f"Raw optical flow data saved to {raw_flow_path}")
else:
print("Failed to compute optical flow.")