局部最优 全局最优 局部最优可以推出全局最优 并且想不出反例
-----------------------------
-----------------------------
一、简单题目
1、455 分发饼干
题目描述:假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。
--------------- python ---------------
class Solution:
def findContentChildren(self, g, s):
g.sort() # 将孩子的贪心因子排序
s.sort() # 将饼干的尺寸排序
index = len(s) - 1 # 饼干数组的下标,从最后一个饼干开始
result = 0 # 满足孩子的数量
for i in range(len(g)-1, -1, -1): # 遍历胃口,从最后一个孩子开始
if index >= 0 and s[index] >= g[i]: # 遍历饼干
result += 1
index -= 1
return result
2、1005 k次取反后最大化的数组和
1005. K 次取反后最大化的数组和 - 力扣(LeetCode)
题目描述:给定一个整数数组 A,我们只能用以下方法修改该数组:我们选择某个索引 i 并将 A[i] 替换为 -A[i],然后总共重复这个过程 K 次。(我们可以多次选择同一个索引 i。)以这种方式修改数组后,返回数组可能的最大和。
class Solution:
def largestSumAfterKNegations(self, A: List[int], K: int) -> int:
A.sort(key=lambda x: abs(x), reverse=True) # 第一步:按照绝对值降序排序数组A
for i in range(len(A)): # 第二步:执行K次取反操作
if A[i] < 0 and K > 0:
A[i] *= -1
K -= 1
if K % 2 == 1: # 第三步:如果K还有剩余次数,将绝对值最小的元素取反
A[-1] *= -1
result = sum(A) # 第四步:计算数组A的元素和
return result
3、860 柠檬水找零
题目描述:在柠檬水摊上,每一杯柠檬水的售价为 5 美元。顾客排队购买你的产品,(按账单 bills 支付的顺序)一次购买一杯。每位顾客只买一杯柠檬水,然后向你付 5 美元、10 美元或 20 美元。你必须给每个顾客正确找零,也就是说净交易是每位顾客向你支付 5 美元。注意,一开始你手头没有任何零钱。如果你能给每位顾客正确找零,返回 true ,否则返回 false 。
--------------- python ---------------
class Solution:
def lemonadeChange(self, bills: List[int]) -> bool:
five = 0
ten = 0
twenty = 0
for bill in bills:
# 情况一:收到5美元
if bill == 5:
five += 1
# 情况二:收到10美元
if bill == 10:
if five <= 0:
return False
ten += 1
five -= 1
# 情况三:收到20美元
if bill == 20:
# 先尝试使用10美元和5美元找零
if five > 0 and ten > 0:
five -= 1
ten -= 1
#twenty += 1
# 如果无法使用10美元找零,则尝试使用三张5美元找零
elif five >= 3:
five -= 3
#twenty += 1
else:
return False
return True
二、中等题目-序列问题
1、376 摆动序列
题目描述:给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
--------------- python ---------------
class Solution:
def wiggleMaxLength(self, nums):
if len(nums) <= 1:
return len(nums) # 如果数组长度为0或1,则返回数组长度
curDiff = 0 # 当前一对元素的差值
preDiff = 0 # 前一对元素的差值
result = 1 # 记录峰值的个数,初始为1(默认最右边的元素被视为峰值)
for i in range(len(nums) - 1):
curDiff = nums[i + 1] - nums[i] # 计算下一个元素与当前元素的差值
# 如果遇到一个峰值
if (preDiff <= 0 and curDiff > 0) or (preDiff >= 0 and curDiff < 0):
result += 1 # 峰值个数加1
preDiff = curDiff # 注意这里,只在摆动变化的时候更新preDiff
return result # 返回最长摆动子序列的长度
2、738 单调递增的数字
题目描述:给定一个非负整数 N,找出小于或等于 N 的最大的整数,同时这个整数需要满足其各个位数上的数字是单调递增。(当且仅当每个相邻位数上的数字 x 和 y 满足 x <= y 时,我们称这个整数是单调递增的。)
Tips:两位数的情况--十位数减一,个位数变为9。需要从后向前,332,前向后是329,但是又不满足递增了。从后向前,有递减,后面全部为9,前一位减1(保证比原数小)。
--------------- python ---------------
class Solution:
def monotoneIncreasingDigits(self, N: int) -> int:
strNum = str(N)
for i in range(len(strNum) - 1, 0, -1):
# 如果当前字符比前一个字符小,说明需要修改前一个字符
if strNum[i - 1] > strNum[i]:
# 将前一个字符减1,以保证递增性质
# 使用字符串切片操作将修改后的前面部分与后面部分进行拼接
strNum = strNum[:i - 1] + str(int(strNum[i - 1]) - 1) + '9' * (len(strNum) - i)
return int(strNum)
附一种错误的,写的时候理所当然感觉只要有递减就最高位-1,后面全部为9,这种情况120输出99,但是实际上是119。需要两位数两位数比较。
class Solution:
def monotoneIncreasingDigits(self, n: int) -> int:
strnum=str(n)
for i in range(len(strnum)-1):
if strnum[i]>strnum[i+1]:
return int(str(int(strnum[0])-1)+'9'*(len(strnum)-1))
return n
三、中等题目-贪心解决股票
1、122 买卖股票的最佳时机2
122. 买卖股票的最佳时机 II - 力扣(LeetCode)
题目描述:给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。
Tips:只收集每天的正利润。
--------------- python ---------------
class Solution:
def maxProfit(self, prices: List[int]) -> int:
result = 0
for i in range(1, len(prices)):
result += max(prices[i] - prices[i - 1], 0)
return result
四、中等题目-两个维度权衡
1、135 分发糖果
题目描述:老师想给孩子们分发糖果,有 N 个孩子站成了一条直线,老师会根据每个孩子的表现,预先给他们评分。你需要按照以下要求,帮助老师给这些孩子分发糖果:
- 每个孩子至少分配到 1 个糖果。
- 相邻的孩子中,评分高的孩子必须获得更多的糖果。
那么这样下来,老师至少需要准备多少颗糖果呢?
Tips:考虑两边的情况一定要分开遍历。
--------------- python ---------------
class Solution:
def candy(self, ratings: List[int]) -> int:
candyVec = [1] * len(ratings)
# 从前向后遍历,处理右侧比左侧评分高的情况
for i in range(1, len(ratings)):
if ratings[i] > ratings[i - 1]:
candyVec[i] = candyVec[i - 1] + 1
# 从后向前遍历,处理左侧比右侧评分高的情况
for i in range(len(ratings) - 2, -1, -1):
if ratings[i] > ratings[i + 1]:
candyVec[i] = max(candyVec[i], candyVec[i + 1] + 1)
# 统计结果
result = sum(candyVec)
return result
2、406 根据身高重建队列
题目描述:假设有打乱顺序的一群人站成一个队列,数组 people 表示队列中一些人的属性(不一定按顺序)。每个 people[i] = [hi, ki] 表示第 i 个人的身高为 hi ,前面 正好 有 ki 个身高大于或等于 hi 的人。请你重新构造并返回输入数组 people 所表示的队列。返回的队列应该格式化为数组 queue ,其中 queue[j] = [hj, kj] 是队列中第 j 个人的属性(queue[0] 是排在队列前面的人)。
class Solution:
def reconstructQueue(self, people: List[List[int]]) -> List[List[int]]:
# 先按照h维度的身高顺序从高到低排序。确定第一个维度
# lambda返回的是一个元组:当-x[0](维度h)相同时,再根据x[1](维度k)从小到大排序
people.sort(key=lambda x: (-x[0], x[1]))
que = []
# 根据每个元素的第二个维度k,贪心算法,进行插入
# people已经排序过了:同一高度时k值小的排前面。
for p in people:
que.insert(p[1], p)
return que
五、有点难度-区间问题
1、55 跳跃游戏
题目描述:给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。判断你是否能够到达最后一个位置。
Tips:关注的是跳跃覆盖范围。
--------------- python ---------------
class Solution:
def canJump(self, nums: List[int]) -> bool:
cover = 0
if len(nums) == 1: return True
i = 0
# python不支持动态修改for循环中变量,使用while循环代替
while i <= cover:
cover = max(i + nums[i], cover)
if cover >= len(nums) - 1: return True
i += 1
return False
2、45 跳跃游戏2
题目描述:给定一个非负整数数组,你最初位于数组的第一个位置。数组中的每个元素代表你在该位置可以跳跃的最大长度。你的目标是使用最少的跳跃次数到达数组的最后一个位置。
Tips:只要i遇到当前最大范围,加+1。
--------------- python ---------------
class Solution:
def jump(self, nums):
cur_distance = 0 # 当前覆盖的最远距离下标
ans = 0 # 记录走的最大步数
next_distance = 0 # 下一步覆盖的最远距离下标
for i in range(len(nums) - 1): # 注意这里是小于len(nums) - 1,这是关键所在
next_distance = max(nums[i] + i, next_distance) # 更新下一步覆盖的最远距离下标
if i == cur_distance: # 遇到当前覆盖的最远距离下标
cur_distance = next_distance # 更新当前覆盖的最远距离下标
ans += 1
return ans
3、452 用最少数量的箭引爆气球
452. 用最少数量的箭引爆气球 - 力扣(LeetCode)
题目描述:在二维空间中有许多球形的气球。对于每个气球,提供的输入是水平方向上,气球直径的开始和结束坐标。由于它是水平的,所以纵坐标并不重要,因此只要知道开始和结束的横坐标就足够了。开始坐标总是小于结束坐标。一支弓箭可以沿着 x 轴从不同点完全垂直地射出。在坐标 x 处射出一支箭,若有一个气球的直径的开始和结束坐标为 xstart,xend, 且满足 xstart ≤ x ≤ xend,则该气球会被引爆。可以射出的弓箭的数量没有限制。 弓箭一旦被射出之后,可以无限地前进。我们想找到使得所有气球全部被引爆,所需的弓箭的最小数量。给你一个数组 points ,其中 points [i] = [xstart,xend] ,返回引爆所有气球所必须射出的最小弓箭数。
--------------- python ---------------
class Solution:
def findMinArrowShots(self, points: List[List[int]]) -> int:
if len(points) == 0: return 0
points.sort(key=lambda x: x[0])
result = 1
for i in range(1, len(points)):
if points[i][0] > points[i - 1][1]: # 气球i和气球i-1不挨着,注意这里不是>=
result += 1
else:
points[i][1] = min(points[i - 1][1], points[i][1]) # 更新重叠气球最小右边界
return result
4、435 无重叠区间
题目描述:给定一个区间的集合,找到需要移除区间的最小数量,使剩余区间互不重叠。注意: 可以认为区间的终点总是大于它的起点。 区间 [1,2] 和 [2,3] 的边界相互“接触”,但没有相互重叠。
--------------- python ---------------
class Solution:
def eraseOverlapIntervals(self, intervals: List[List[int]]) -> int:
if not intervals:
return 0
intervals.sort(key=lambda x: x[0]) # 按照左边界升序排序
count = 0 # 记录重叠区间数量
for i in range(1, len(intervals)):
if intervals[i][0] < intervals[i - 1][1]: # 存在重叠区间
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]) # 更新重叠区间的右边界
count += 1
return count
5、763 划分字母区间
题目描述:字符串 S 由小写字母组成。我们要把这个字符串划分为尽可能多的片段,同一字母最多出现在一个片段中。返回一个表示每个字符串片段的长度的列表。
Tips:这道题不是很像贪心,没有局部最优推出全局最优的过程。(用最远距离模拟圈字符)
- 统计每一个字符最后出现的位置
- 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点
--------------- python ---------------
class Solution:
def partitionLabels(self, s: str) -> List[int]:
last_occurrence = {} # 存储每个字符最后出现的位置
for i, ch in enumerate(s):
last_occurrence[ch] = i
result = []
start = 0
end = 0
for i, ch in enumerate(s):
end = max(end, last_occurrence[ch]) # 找到当前字符出现的最远位置
if i == end: # 如果当前位置是最远位置,表示可以分割出一个区间
result.append(end - start + 1)
start = i + 1
return result
6、56 合并区间
题目描述:给出一个区间的集合,请合并所有重叠的区间。
--------------- python ---------------
class Solution:
def merge(self, intervals):
result = []
if len(intervals) == 0:
return result # 区间集合为空直接返回
intervals.sort(key=lambda x: x[0]) # 按照区间的左边界进行排序
result.append(intervals[0]) # 第一个区间可以直接放入结果集中
for i in range(1, len(intervals)):
if result[-1][1] >= intervals[i][0]: # 发现重叠区间
# 合并区间,只需要更新结果集最后一个区间的右边界,因为根据排序,左边界已经是最小的
result[-1][1] = max(result[-1][1], intervals[i][1])
else:
result.append(intervals[i]) # 区间不重叠
return result
六、有点难度-其他
1、53 最大子序和
题目描述:给定一个整数数组 nums ,找到一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。
--------------- python ---------------
class Solution:
def maxSubArray(self, nums):
result = float('-inf') # 初始化结果为负无穷大
count = 0
for i in range(len(nums)):
count += nums[i]
if count > result: # 取区间累计的最大值(相当于不断确定最大子序终止位置)
result = count
if count <= 0: # 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
count = 0
return result
2、134 加油站
题目描述:在一条环路上有 N 个加油站,其中第 i 个加油站有汽油 gas[i] 升。你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1。
Tips:如果总油量减去总消耗大于等于零那么一定可以跑完一圈,说明 各个站点的加油站 剩油量rest[i]相加一定是大于等于零的。
--------------- python ---------------
class Solution:
def canCompleteCircuit(self, gas: List[int], cost: List[int]) -> int:
curSum = 0 # 当前累计的剩余油量
totalSum = 0 # 总剩余油量
start = 0 # 起始位置
for i in range(len(gas)):
curSum += gas[i] - cost[i]
totalSum += gas[i] - cost[i]
if curSum < 0: # 当前累计剩余油量curSum小于0
start = i + 1 # 起始位置更新为i+1
curSum = 0 # curSum重新从0开始累计
if totalSum < 0:
return -1 # 总剩余油量totalSum小于0,说明无法环绕一圈
return start
3、968 监控二叉树
题目描述:给定一个二叉树,我们在树的节点上安装摄像头。节点上的每个摄影头都可以监视其父对象、自身及其直接子对象。计算监控树的所有节点所需的最小摄像头数量。
Tips:局部最优--叶子节点的父节点有摄像头;整体最优--全部摄像头数量最少。
--------------- python ---------------
class Solution:
# Greedy Algo:
# 从下往上安装摄像头:跳过leaves这样安装数量最少,局部最优 -> 全局最优
# 先给leaves的父节点安装,然后每隔两层节点安装一个摄像头,直到Head
# 0: 该节点未覆盖
# 1: 该节点有摄像头
# 2: 该节点有覆盖
def minCameraCover(self, root: TreeNode) -> int:
# 定义递归函数
result = [0] # 用于记录摄像头的安装数量
if self.traversal(root, result) == 0:
result[0] += 1
return result[0]
def traversal(self, cur: TreeNode, result: List[int]) -> int:
if not cur:
return 2
left = self.traversal(cur.left, result)
right = self.traversal(cur.right, result)
# 情况1: 左右节点都有覆盖
if left == 2 and right == 2:
return 0
# 情况2:
# left == 0 && right == 0 左右节点无覆盖
# left == 1 && right == 0 左节点有摄像头,右节点无覆盖
# left == 0 && right == 1 左节点无覆盖,右节点有摄像头
# left == 0 && right == 2 左节点无覆盖,右节点覆盖
# left == 2 && right == 0 左节点覆盖,右节点无覆盖
elif left == 0 or right == 0:
result[0] += 1
return 1
# 情况3:
# left == 1 && right == 2 左节点有摄像头,右节点有覆盖
# left == 2 && right == 1 左节点有覆盖,右节点有摄像头
# left == 1 && right == 1 左右节点都有摄像头
else:
return 2
附一个报错代码:(直接使用result作为一个值)
class Solution:
def minCameraCover(self, root: Optional[TreeNode]) -> int:
result=0
if traversal(root)==0:
result+=1
def traversal(cur):
#nonlocal result 需要nonlocal 修饰
if not cur:
return 2
left=traversal(cur.left)
right=traversal(cur.right)
if left==2 and right==2:
return 0
elif left==0 or right==0:
result+=1
return 1
else:
return 2
return result
-----------------
1、这样子函数定义需要在函数调用前
2、在traversal函数内,你尝试修改result(result+=1).
但是result在traversal函数的作用域外部定义.
因此在traversal函数内部直接修改它会导致错误。
再附一个错误:
class Solution:
def minCameraCover(self, root: Optional[TreeNode]) -> int:
result=0
def traversal(cur,result):
if not cur:
return 2
left=traversal(cur.left,result)
right=traversal(cur.right,result)
if left==2 and right==2:
return 0
elif left==0 or right==0:
result+=1
return 1
else:
return 2
if traversal(root,result)==0:
result+=1
return result
------------------
将result作为参数传递给traversal函数。
在递归过程中,即使修改了result,这个修改不会反映到外部作用域中。
最后输出就是0。