Bootstrap

【YOLOv8】YOLOv8改进系列(6)----替换主干网络之VanillaNet

主页:HABUO🍁主页:HABUO

🍁YOLOv8入门+改进专栏🍁

🍁如果再也不能见到你,祝你早安,午安,晚安🍁


【YOLOv8改进系列】: 

【YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT 

YOLOv8改进系列(2)----替换主干网络之FasterNet

YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck 

YOLOv8改进系列(5)----替换主干网络之EfficientFormerV2 


目录

💯一、VanillaNet介绍

1. 简介

2. VanillaNet 架构设计

架构组成

激活函数设计

深度训练策略

3. 实验与结果

消融研究

性能比较

4. 关键结论

💯二、具体添加方法 

第①步:创建VanillaNet.py

第②步:修改task.py 

(1)引入创建的vanillanet文件 

(2)修改_predict_once函数 

(3)修改parse_model函数

第③步:yolov8.yaml文件修改   

第④步:验证是否加入成功  


💯一、VanillaNet介绍

1. 简介

VanillaNet,是一种强调简洁性和优雅设计的新型神经网络架构。VanillaNet 通过避免深度结构、跳过连接和复杂的操作(如自注意力机制),实现了在计算机视觉任务中与深度复杂网络相当的性能,同时具有更高的效率和可部署性。

2. VanillaNet 架构设计

VanillaNet 的核心思想是通过极简的设计实现高效性能。其架构设计遵循以下原则:

架构组成

  • Stem:使用一个 4×4 的卷积层将输入图像从 3 通道映射到 C 通道,步长为 4。

  • 主干网络:包含 4 个阶段,每个阶段由一个卷积层组成,通道数逐阶段翻倍,特征图尺寸逐阶段减半。

  • 分类器:最后一个全连接层用于输出分类结果。

  • 关键设计:VanillaNet 不使用跳过连接、自注意力机制或其他复杂模块,仅使用 1×1 卷积层以降低计算成本。

激活函数设计

为了增强网络的非线性能力,作者提出了一种基于级联的激活函数(Series Informed Activation Function)。该激活函数通过并行堆叠多个激活函数来增强非线性,同时保持计算效率。

深度训练策略

为了在训练阶段增强网络的非线性能力,作者提出了一种“深度训练”策略。在训练初期,网络中包含两个卷积层和一个激活函数,随着训练的进行,激活函数逐渐退化为恒等映射,最终两个卷积层可以合并为一个,从而减少推理时间。


3. 实验与结果

论文通过大量实验验证了 VanillaNet 的性能,并与其他先进架构进行了比较。

消融研究

  • 级联激活函数的影响:实验表明,使用级联激活函数(如 n=3)可以显著提升 VanillaNet 的性能,相比普通 ReLU 激活函数,Top-1 准确率从 60.53% 提升到 76.36%。

  • 深度训练策略的影响:该策略可以进一步提升 VanillaNet 的性能,使其在 ImageNet 数据集上达到 76.36% 的 Top-1 准确率。

  • 跳过连接的影响:实验表明,即使在 VanillaNet 中加入跳过连接,性能提升也微乎其微,这表明 VanillaNet 的瓶颈在于非线性能力,而非深度。

性能比较

  • ImageNet 分类:VanillaNet 在 ImageNet 数据集上表现出色,例如 VanillaNet-9 在仅 9 层深度的情况下,Top-1 准确率达到 79.87%,推理速度为 2.91ms,显著优于 ResNet-50 和其他复杂网络。

  • COCO 目标检测和分割:VanillaNet 在 COCO 数据集上的表现也与 ConvNext 和 Swin Transformer 等复杂网络相当,同时具有更高的帧率(FPS)。


4. 关键结论

  • 简洁性的重要性:VanillaNet 证明了即使在没有复杂模块(如跳过连接和自注意力)的情况下,简单的卷积网络仍可以实现与复杂网络相当的性能。

  • 高效部署潜力:VanillaNet 的简洁设计使其在资源受限的环境中具有显著优势,尤其是在现代 AI 芯片上,其推理速度远超复杂网络。

  • 未来方向:作者计划进一步探索更高效的参数分配策略,以优化 VanillaNet 的性能。


💯二、具体添加方法 

第①步:创建VanillaNet.py

创建完成后,将下面代码直接复制粘贴进去:

import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.layers import weight_init, DropPath
import numpy as np

__all__ = ['vanillanet_5', 'vanillanet_6', 'vanillanet_7', 'vanillanet_8', 'vanillanet_9', 'vanillanet_10', 'vanillanet_11', 'vanillanet_12', 'vanillanet_13', 'vanillanet_13_x1_5', 'vanillanet_13_x1_5_ada_pool']

class activation(nn.ReLU):
    def __init__(self, dim, act_num=3, deploy=False):
        super(activation, self).__init__()
        self.deploy = deploy
        self.weight = torch.nn.Parameter(torch.randn(dim, 1, act_num*2 + 1, act_num*2 + 1))
        self.bias = None
        self.bn = nn.BatchNorm2d(dim, eps=1e-6)
        self.dim = dim
        self.act_num = act_num
        weight_init.trunc_normal_(self.weight, std=.02)

    def forward(self, x):
        if self.deploy:
            return torch.nn.functional.conv2d(
                super(activation, self).forward(x), 
                self.weight, self.bias, padding=(self.act_num*2 + 1)//2, groups=self.dim)
        else:
            return self.bn(torch.nn.functional.conv2d(
                super(activation, self).forward(x),
                self.weight, padding=self.act_num, groups=self.dim))

    def _fuse_bn_tensor(self, weight, bn):
        kernel = weight
        running_mean = bn.running_mean
        running_var = bn.running_var
        gamma = bn.weight
        beta = bn.bias
        eps = bn.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta + (0 - running_mean) * gamma / std
    
    def switch_to_deploy(self):
        if not self.deploy:
            kernel, bias = self._fuse_bn_tensor(self.weight, self.bn)
            self.weight.data = kernel
            self.bias = torch.nn.Parameter(torch.zeros(self.dim))
            self.bias.data = bias
            self.__delattr__('bn')
            self.deploy = True


class Block(nn.Module):
    def __init__(self, dim, dim_out, act_num=3, stride=2, deploy=False, ada_pool=None):
        super().__init__()
        self.act_learn = 1
        self.deploy = deploy
        if self.deploy:
            self.conv = nn.Conv2d(dim, dim_out, kernel_size=1)
        else:
            self.conv1 = nn.Sequential(
                nn.Conv2d(dim, dim, kernel_size=1),
                nn.BatchNorm2d(dim, eps=1e-6),
            )
            self.conv2 = nn.Sequential(
                nn.Conv2d(dim, dim_out, kernel_size=1),
                nn.BatchNorm2d(dim_out, eps=1e-6)
            )

        if not ada_pool:
            self.pool = nn.Identity() if stride == 1 else nn.MaxPool2d(stride)
        else:
            self.pool = nn.Identity() if stride == 1 else nn.AdaptiveMaxPool2d((ada_pool, ada_pool))

        self.act = activation(dim_out, act_num)
 
    def forward(self, x):
        if self.deploy:
            x = self.conv(x)
        else:
            x = self.conv1(x)
            x = torch.nn.functional.leaky_relu(x,self.act_learn)
            x = self.conv2(x)

        x = self.pool(x)
        x = self.act(x)
        return x

    def _fuse_bn_tensor(self, conv, bn):
        kernel = conv.weight
        bias = conv.bias
        running_mean = bn.running_mean
        running_var = bn.running_var
        gamma = bn.weight
        beta = bn.bias
        eps = bn.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta + (bias - running_mean) * gamma / std
    
    def switch_to_deploy(self):
        if not self.deploy:
            kernel, bias = self._fuse_bn_tensor(self.conv1[0], self.conv1[1])
            self.conv1[0].weight.data = kernel
            self.conv1[0].bias.data = bias
            # kernel, bias = self.conv2[0].weight.data, self.conv2[0].bias.data
            kernel, bias = self._fuse_bn_tensor(self.conv2[0], self.conv2[1])
            self.conv = self.conv2[0]
            self.conv.weight.data = torch.matmul(kernel.transpose(1,3), self.conv1[0].weight.data.squeeze(3).squeeze(2)).transpose(1,3)
            self.conv.bias.data = bias + (self.conv1[0].bias.data.view(1,-1,1,1)*kernel).sum(3).sum(2).sum(1)
            self.__delattr__('conv1')
            self.__delattr__('conv2')
            self.act.switch_to_deploy()
            self.deploy = True
    

class VanillaNet(nn.Module):
    def __init__(self, in_chans=3, num_classes=1000, dims=[96, 192, 384, 768], 
                 drop_rate=0, act_num=3, strides=[2,2,2,1], deploy=False, ada_pool=None, **kwargs):
        super().__init__()
        self.deploy = deploy
        if self.deploy:
            self.stem = nn.Sequential(
                nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
                activation(dims[0], act_num)
            )
        else:
            self.stem1 = nn.Sequential(
                nn.Conv2d(in_chans, dims[0], kernel_size=4, stride=4),
                nn.BatchNorm2d(dims[0], eps=1e-6),
            )
            self.stem2 = nn.Sequential(
                nn.Conv2d(dims[0], dims[0], kernel_size=1, stride=1),
                nn.BatchNorm2d(dims[0], eps=1e-6),
                activation(dims[0], act_num)
            )

        self.act_learn = 1

        self.stages = nn.ModuleList()
        for i in range(len(strides)):
            if not ada_pool:
                stage = Block(dim=dims[i], dim_out=dims[i+1], act_num=act_num, stride=strides[i], deploy=deploy)
            else:
                stage = Block(dim=dims[i], dim_out=dims[i+1], act_num=act_num, stride=strides[i], deploy=deploy, ada_pool=ada_pool[i])
            self.stages.append(stage)
        self.depth = len(strides)

        self.apply(self._init_weights)
        self.channel = [i.size(1) for i in self.forward(torch.randn(1, 3, 640, 640))]

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv2d, nn.Linear)):
            weight_init.trunc_normal_(m.weight, std=.02)
            nn.init.constant_(m.bias, 0)

    def change_act(self, m):
        for i in range(self.depth):
            self.stages[i].act_learn = m
        self.act_learn = m

    def forward(self, x):
        input_size = x.size(2)
        scale = [4, 8, 16, 32]
        features = [None, None, None, None]
        if self.deploy:
            x = self.stem(x)
        else:
            x = self.stem1(x)
            x = torch.nn.functional.leaky_relu(x,self.act_learn)
            x = self.stem2(x)
        if input_size // x.size(2) in scale:
            features[scale.index(input_size // x.size(2))] = x
        for i in range(self.depth):
            x = self.stages[i](x)
            if input_size // x.size(2) in scale:
                features[scale.index(input_size // x.size(2))] = x
        return features

    def _fuse_bn_tensor(self, conv, bn):
        kernel = conv.weight
        bias = conv.bias
        running_mean = bn.running_mean
        running_var = bn.running_var
        gamma = bn.weight
        beta = bn.bias
        eps = bn.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta + (bias - running_mean) * gamma / std
    
    def switch_to_deploy(self):
        if not self.deploy:
            self.stem2[2].switch_to_deploy()
            kernel, bias = self._fuse_bn_tensor(self.stem1[0], self.stem1[1])
            self.stem1[0].weight.data = kernel
            self.stem1[0].bias.data = bias
            kernel, bias = self._fuse_bn_tensor(self.stem2[0], self.stem2[1])
            self.stem1[0].weight.data = torch.einsum('oi,icjk->ocjk', kernel.squeeze(3).squeeze(2), self.stem1[0].weight.data)
            self.stem1[0].bias.data = bias + (self.stem1[0].bias.data.view(1,-1,1,1)*kernel).sum(3).sum(2).sum(1)
            self.stem = torch.nn.Sequential(*[self.stem1[0], self.stem2[2]])
            self.__delattr__('stem1')
            self.__delattr__('stem2')

            for i in range(self.depth):
                self.stages[i].switch_to_deploy()

            self.deploy = True

def update_weight(model_dict, weight_dict):
    idx, temp_dict = 0, {}
    for k, v in weight_dict.items():
        if k in model_dict.keys() and np.shape(model_dict[k]) == np.shape(v):
            temp_dict[k] = v
            idx += 1
    model_dict.update(temp_dict)
    print(f'loading weights... {idx}/{len(model_dict)} items')
    return model_dict

def vanillanet_5(pretrained='',in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 256*4, 512*4, 1024*4], strides=[2,2,2], **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_6(pretrained='',in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 256*4, 512*4, 1024*4, 1024*4], strides=[2,2,2,1], **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_7(pretrained='',in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 1024*4, 1024*4], strides=[1,2,2,2,1], **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_8(pretrained='', in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 1024*4, 1024*4], strides=[1,2,2,1,2,1], **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_9(pretrained='', in_22k=False, **kwargs):
    model = VanillaNet(dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 1024*4, 1024*4], strides=[1,2,2,1,1,2,1], **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_10(pretrained='', in_22k=False, **kwargs):
    model = VanillaNet(
        dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],
        strides=[1,2,2,1,1,1,2,1],
        **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_11(pretrained='', in_22k=False, **kwargs):
    model = VanillaNet(
        dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],
        strides=[1,2,2,1,1,1,1,2,1],
        **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_12(pretrained='', in_22k=False, **kwargs):
    model = VanillaNet(
        dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],
        strides=[1,2,2,1,1,1,1,1,2,1],
        **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_13(pretrained='', in_22k=False, **kwargs):
    model = VanillaNet(
        dims=[128*4, 128*4, 256*4, 512*4, 512*4, 512*4, 512*4, 512*4, 512*4, 512*4, 1024*4, 1024*4],
        strides=[1,2,2,1,1,1,1,1,1,2,1],
        **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_13_x1_5(pretrained='', in_22k=False, **kwargs):
    model = VanillaNet(
        dims=[128*6, 128*6, 256*6, 512*6, 512*6, 512*6, 512*6, 512*6, 512*6, 512*6, 1024*6, 1024*6],
        strides=[1,2,2,1,1,1,1,1,1,2,1],
        **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

def vanillanet_13_x1_5_ada_pool(pretrained='', in_22k=False, **kwargs):
    model = VanillaNet(
        dims=[128*6, 128*6, 256*6, 512*6, 512*6, 512*6, 512*6, 512*6, 512*6, 512*6, 1024*6, 1024*6],
        strides=[1,2,2,1,1,1,1,1,1,2,1],
        ada_pool=[0,40,20,0,0,0,0,0,0,10,0],
        **kwargs)
    if pretrained:
        weights = torch.load(pretrained)['model_ema']
        model.load_state_dict(update_weight(model.state_dict(), weights))
    return model

if __name__ == '__main__':
    inputs = torch.randn((1, 3, 640, 640))
    model = vanillanet_10()
    # weights = torch.load('vanillanet_5.pth')['model_ema']
    # model.load_state_dict(update_weight(model.state_dict(), weights))
    pred = model(inputs)
    for i in pred:
        print(i.size())

第②步:修改task.py 

(1)引入创建的vanillanet文件 

from ultralytics.nn.backbone.VanillaNet import *

(2)修改_predict_once函数 

 def _predict_once(self, x, profile=False, visualize=False, embed=None):
        """
        Perform a forward pass through the network.
        Args:
            x (torch.Tensor): The input tensor to the model.
            profile (bool):  Print the computation time of each layer if True, defaults to False.
            visualize (bool): Save the feature maps of the model if True, defaults to False.
            embed (list, optional): A list of feature vectors/embeddings to return.
        Returns:
            (torch.Tensor): The last output of the model.
        """
        y, dt, embeddings = [], [], []  # outputs
        for idx, m in enumerate(self.model):
            if m.f != -1:  # if not from previous layer
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]  # from earlier layers
            if profile:
                self._profile_one_layer(m, x, dt)
            if hasattr(m, 'backbone'):
                x = m(x)
                for _ in range(5 - len(x)):
                    x.insert(0, None)
                for i_idx, i in enumerate(x):
                    if i_idx in self.save:
                        y.append(i)
                    else:
                        y.append(None)
                # print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
                x = x[-1]
            else:
                x = m(x)  # run
                y.append(x if m.i in self.save else None)  # save output
            
            # if type(x) in {list, tuple}:
            #     if idx == (len(self.model) - 1):
            #         if type(x[1]) is dict:
            #             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]["one2one"]])}')
            #         else:
            #             print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x[1]])}')
            #     else:
            #         print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x if x_ is not None])}')
            # elif type(x) is dict:
            #     print(f'layer id:{idx:>2} {m.type:>50} output shape:{", ".join([str(x_.size()) for x_ in x["one2one"]])}')
            # else:
            #     if not hasattr(m, 'backbone'):
            #         print(f'layer id:{idx:>2} {m.type:>50} output shape:{x.size()}')
            
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
            if embed and m.i in embed:
                embeddings.append(nn.functional.adaptive_avg_pool2d(x, (1, 1)).squeeze(-1).squeeze(-1))  # flatten
                if m.i == max(embed):
                    return torch.unbind(torch.cat(embeddings, 1), dim=0)
        return x

(3)修改parse_model函数

可以直接把下面的代码粘贴到对应的位置中,后续的改进中,对应的模块就不需要做出改变,有改变处,后续会另有说明 

def parse_model(d, ch, verbose=True, warehouse_manager=None):  # model_dict, input_channels(3)
    """Parse a YOLO model.yaml dictionary into a PyTorch model."""
    import ast
 
    # Args
    max_channels = float("inf")
    nc, act, scales = (d.get(x) for x in ("nc", "activation", "scales"))
    depth, width, kpt_shape = (d.get(x, 1.0) for x in ("depth_multiple", "width_multiple", "kpt_shape"))
    if scales:
        scale = d.get("scale")
        if not scale:
            scale = tuple(scales.keys())[0]
            LOGGER.warning(f"WARNING ⚠️ no model scale passed. Assuming scale='{scale}'.")
        if len(scales[scale]) == 3:
            depth, width, max_channels = scales[scale]
        elif len(scales[scale]) == 4:
            depth, width, max_channels, threshold = scales[scale]
 
    if act:
        Conv.default_act = eval(act)  # redefine default activation, i.e. Conv.default_act = nn.SiLU()
        if verbose:
            LOGGER.info(f"{colorstr('activation:')} {act}")  # print
 
    if verbose:
        LOGGER.info(f"\n{'':>3}{'from':>20}{'n':>3}{'params':>10}  {'module':<60}{'arguments':<50}")
    ch = [ch]
    layers, save, c2 = [], [], ch[-1]  # layers, savelist, ch out
    is_backbone = False
    for i, (f, n, m, args) in enumerate(d["backbone"] + d["head"]):  # from, number, module, args
        try:
            if m == 'node_mode':
                m = d[m]
                if len(args) > 0:
                    if args[0] == 'head_channel':
                        args[0] = int(d[args[0]])
            t = m
            m = getattr(torch.nn, m[3:]) if 'nn.' in m else globals()[m]  # get module
        except:
            pass
        for j, a in enumerate(args):
            if isinstance(a, str):
                with contextlib.suppress(ValueError):
                    try:
                        args[j] = locals()[a] if a in locals() else ast.literal_eval(a)
                    except:
                        args[j] = a
        n = n_ = max(round(n * depth), 1) if n > 1 else n  # depth gain
        if m in {
            Classify, Conv, ConvTranspose, GhostConv, Bottleneck, GhostBottleneck, SPP, SPPF, DWConv, Focus, BottleneckCSP, C1, C2, C2f, ELAN1, AConv, SPPELAN, C2fAttn, C3, C3TR, 
            C3Ghost, nn.Conv2d, nn.ConvTranspose2d, DWConvTranspose2d, C3x, RepC3, PSA, SCDown, C2fCIB, C2f_Faster, C2f_ODConv,
            C2f_Faster_EMA, C2f_DBB, GSConv, GSConvns, VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, SCConv, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
            C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, KWConv, C2f_KW, C3_KW, DySnakeConv, C2f_DySnakeConv, C3_DySnakeConv,
            DCNv2, C3_DCNv2, C2f_DCNv2, DCNV3_YOLO, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv,
            OREPA, OREPA_LargeConv, RepVGGBlock_OREPA, C3_OREPA, C2f_OREPA, C3_DBB, C3_REPVGGOREPA, C2f_REPVGGOREPA,
            C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, C3_MSBlock, C2f_MSBlock,
            C3_DLKA, C2f_DLKA, CSPStage, SPDConv, RepBlock, C3_EMBC, C2f_EMBC, SPPF_LSKA, C3_DAttention, C2f_DAttention,
            C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, RFAConv, RFCAConv, RFCBAMConv, C3_RFAConv, C2f_RFAConv,
            C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv, C3_FocusedLinearAttention, C2f_FocusedLinearAttention,
            C3_AKConv, C2f_AKConv, AKConv, C3_MLCA, C2f_MLCA,
            C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
            C3_AggregatedAtt, C2f_AggregatedAtt, DCNV4_YOLO, C3_DCNv4, C2f_DCNv4, HWD, SEAM,
            C3_SWC, C2f_SWC, C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
            C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, ADown, V7DownSampling,
            C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv, C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, DGCST,
            C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule, RepNCSPELAN4_CAA, C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, SRFD, DRFD, RGCSPELAN,
            C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA, C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv,
            C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, SimpleStem, VisionClueMerge, VSSBlock_YOLO, XSSBlock, GLSA, C2f_WTConv, WTConv2d, FeaturePyramidSharedConv,
            C2f_FMB, LDConv, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
            C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
            C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
            C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
            MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, PSConv, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
        }:
            if args[0] == 'head_channel':
                args[0] = d[args[0]]
            c1, c2 = ch[f], args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            if m is C2fAttn:
                args[1] = make_divisible(min(args[1], max_channels // 2) * width, 8)  # embed channels
                args[2] = int(
                    max(round(min(args[2], max_channels // 2 // 32)) * width, 1) if args[2] > 1 else args[2]
                )  # num heads
 
            args = [c1, c2, *args[1:]]
            if m in (KWConv, C2f_KW, C3_KW):
                args.insert(2, f'layer{i}')
                args.insert(2, warehouse_manager)
            if m in (DySnakeConv,):
                c2 = c2 * 3
            if m in (RepNCSPELAN4, DBBNCSPELAN4, OREPANCSPELAN4, DRBNCSPELAN4, RepNCSPELAN4_CAA):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in {
                     BottleneckCSP, C1, C2, C2f, C2fAttn, C3, C3TR, C3Ghost, C3x, RepC3, C2fCIB, C2f_Faster, C2f_ODConv, C2f_Faster_EMA, C2f_DBB,
                     VoVGSCSP, VoVGSCSPns, VoVGSCSPC, C2f_CloAtt, C3_CloAtt, C2f_SCConv, C3_SCConv, C2f_ScConv, C3_ScConv,
                     C3_EMSC, C3_EMSCP, C2f_EMSC, C2f_EMSCP, RCSOSA, C2f_KW, C3_KW, C2f_DySnakeConv, C3_DySnakeConv,
                     C3_DCNv2, C2f_DCNv2, C3_DCNv3, C2f_DCNv3, C3_Faster, C3_Faster_EMA, C3_ODConv, C3_OREPA, C2f_OREPA, C3_DBB,
                     C3_REPVGGOREPA, C2f_REPVGGOREPA, C3_DCNv2_Dynamic, C2f_DCNv2_Dynamic, C3_ContextGuided, C2f_ContextGuided, 
                     C3_MSBlock, C2f_MSBlock, C3_DLKA, C2f_DLKA, CSPStage, RepBlock, C3_EMBC, C2f_EMBC, C3_DAttention, C2f_DAttention,
                     C3_Parc, C2f_Parc, C3_DWR, C2f_DWR, C3_RFAConv, C2f_RFAConv, C3_RFCBAMConv, C2f_RFCBAMConv, C3_RFCAConv, C2f_RFCAConv,
                     C3_FocusedLinearAttention, C2f_FocusedLinearAttention, C3_AKConv, C2f_AKConv, C3_MLCA, C2f_MLCA,
                     C3_UniRepLKNetBlock, C2f_UniRepLKNetBlock, C3_DRB, C2f_DRB, C3_DWR_DRB, C2f_DWR_DRB, CSP_EDLAN,
                     C3_AggregatedAtt, C2f_AggregatedAtt, C3_DCNv4, C2f_DCNv4, C3_SWC, C2f_SWC,
                     C3_iRMB, C2f_iRMB, C3_iRMB_Cascaded, C2f_iRMB_Cascaded, C3_iRMB_DRB, C2f_iRMB_DRB, C3_iRMB_SWC, C2f_iRMB_SWC,
                     C3_VSS, C2f_VSS, C3_LVMB, C2f_LVMB, C3_DynamicConv, C2f_DynamicConv, C3_GhostDynamicConv, C2f_GhostDynamicConv,
                     C3_RVB, C2f_RVB, C3_RVB_SE, C2f_RVB_SE, C3_RVB_EMA, C2f_RVB_EMA, C3_RetBlock, C2f_RetBlock, C3_PKIModule, C2f_PKIModule,
                     C3_FADC, C2f_FADC, C3_PPA, C2f_PPA, RGCSPELAN, C3_Faster_CGLU, C2f_Faster_CGLU, C3_Star, C2f_Star, C3_Star_CAA, C2f_Star_CAA,
                     C3_KAN, C2f_KAN, C3_EIEM, C2f_EIEM, C3_DEConv, C2f_DEConv, C3_SMPCGLU, C2f_SMPCGLU, C3_Heat, C2f_Heat, CSP_PTB, XSSBlock, C2f_WTConv,
                     C2f_FMB, C2f_gConv, C2f_WDBB, C2f_DeepDBB, C2f_AdditiveBlock, C2f_AdditiveBlock_CGLU, CSP_MSCB, C2f_MSMHSA_CGLU, CSP_PMSFA, C2f_MogaBlock,
                     C2f_SHSA, C2f_SHSA_CGLU, C2f_SMAFB, C2f_SMAFB_CGLU, C2f_IdentityFormer, C2f_RandomMixing, C2f_PoolingFormer, C2f_ConvFormer, C2f_CaFormer,
                     C2f_IdentityFormerCGLU, C2f_RandomMixingCGLU, C2f_PoolingFormerCGLU, C2f_ConvFormerCGLU, C2f_CaFormerCGLU, CSP_MutilScaleEdgeInformationEnhance, C2f_FFCM,
                     C2f_SFHF, CSP_FreqSpatial, C2f_MSM, C2f_RAB, C2f_HDRAB, C2f_LFE, CSP_MutilScaleEdgeInformationSelect, C2f_SFA, C2f_CTA, C2f_CAMixer, MANet,
                     MANet_FasterBlock, MANet_FasterCGLU, MANet_Star, C2f_HFERB, C2f_DTAB, C2f_ETB, C2f_JDPM, C2f_AP, C2f_Kat, C2f_Faster_KAN, C2f_Strip, C2f_StripCGLU
                     }:
                args.insert(2, n)  # number of repeats
                n = 1
        elif m in {AIFI, AIFI_RepBN}:
            args = [ch[f], *args]
            c2 = args[0]
        elif m in (HGStem, HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock, EIEStem):
            c1, cm, c2 = ch[f], args[0], args[1]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
                cm = make_divisible(min(cm, max_channels) * width, 8)
            args = [c1, cm, c2, *args[2:]]
            if m in (HGBlock, Ghost_HGBlock, Rep_HGBlock, Dynamic_HGBlock):
                args.insert(4, n)  # number of repeats
                n = 1
        elif m is ResNetLayer:
            c2 = args[1] if args[3] else args[1] * 4
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m in ((WorldDetect, ImagePoolingAttn) + DETECT_CLASS + V10_DETECT_CLASS + SEGMENT_CLASS + POSE_CLASS + OBB_CLASS):
            args.append([ch[x] for x in f])
            if m in SEGMENT_CLASS:
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
                if m in (Segment_LSCD, Segment_TADDH, Segment_LSCSBD, Segment_LSDECD, Segment_RSCD):
                    args[3] = make_divisible(min(args[3], max_channels) * width, 8)
            if m in (Detect_LSCD, Detect_TADDH, Detect_LSCSBD, Detect_LSDECD, Detect_RSCD, v10Detect_LSCD, v10Detect_TADDH, v10Detect_RSCD, v10Detect_LSDECD):
                args[1] = make_divisible(min(args[1], max_channels) * width, 8)
            if m in (Pose_LSCD, Pose_TADDH, Pose_LSCSBD, Pose_LSDECD, Pose_RSCD, OBB_LSCD, OBB_TADDH, OBB_LSCSBD, OBB_LSDECD, OBB_RSCD):
                args[2] = make_divisible(min(args[2], max_channels) * width, 8)
        elif m is RTDETRDecoder:  # special case, channels arg must be passed in index 1
            args.insert(1, [ch[x] for x in f])
        elif m is Fusion:
            args[0] = d[args[0]]
            c1, c2 = [ch[x] for x in f], (sum([ch[x] for x in f]) if args[0] == 'concat' else ch[f[0]])
            args = [c1, args[0]]
        elif m is CBLinear:
            c2 = make_divisible(min(args[0][-1], max_channels) * width, 8)
            c1 = ch[f]
            args = [c1, [make_divisible(min(c2_, max_channels) * width, 8) for c2_ in args[0]], *args[1:]]
        elif m is CBFuse:
            c2 = ch[f[-1]]
        elif isinstance(m, str):
            t = m
            if len(args) == 2:        
                m = timm.create_model(m, pretrained=args[0], pretrained_cfg_overlay={'file':args[1]}, features_only=True)
            elif len(args) == 1:
                m = timm.create_model(m, pretrained=args[0], features_only=True)
            c2 = m.feature_info.channels()
        elif m in {convnextv2_atto, convnextv2_femto, convnextv2_pico, convnextv2_nano, convnextv2_tiny, convnextv2_base, convnextv2_large, convnextv2_huge,
                   fasternet_t0, fasternet_t1, fasternet_t2, fasternet_s, fasternet_m, fasternet_l,
                   EfficientViT_M0, EfficientViT_M1, EfficientViT_M2, EfficientViT_M3, EfficientViT_M4, EfficientViT_M5,
                   efficientformerv2_s0, efficientformerv2_s1, efficientformerv2_s2, efficientformerv2_l,
                   vanillanet_5, vanillanet_6, vanillanet_7, vanillanet_8, vanillanet_9, vanillanet_10, vanillanet_11, vanillanet_12, vanillanet_13, vanillanet_13_x1_5, vanillanet_13_x1_5_ada_pool,
                   RevCol,
                   lsknet_t, lsknet_s,
                   SwinTransformer_Tiny,
                   repvit_m0_9, repvit_m1_0, repvit_m1_1, repvit_m1_5, repvit_m2_3,
                   CSWin_tiny, CSWin_small, CSWin_base, CSWin_large,
                   unireplknet_a, unireplknet_f, unireplknet_p, unireplknet_n, unireplknet_t, unireplknet_s, unireplknet_b, unireplknet_l, unireplknet_xl,
                   transnext_micro, transnext_tiny, transnext_small, transnext_base,
                   RMT_T, RMT_S, RMT_B, RMT_L,
                   PKINET_T, PKINET_S, PKINET_B,
                   MobileNetV4ConvSmall, MobileNetV4ConvMedium, MobileNetV4ConvLarge, MobileNetV4HybridMedium, MobileNetV4HybridLarge,
                   starnet_s050, starnet_s100, starnet_s150, starnet_s1, starnet_s2, starnet_s3, starnet_s4
                   }:
            if m is RevCol:
                args[1] = [make_divisible(min(k, max_channels) * width, 8) for k in args[1]]
                args[2] = [max(round(k * depth), 1) for k in args[2]]
            m = m(*args)
            c2 = m.channel
        elif m in {EMA, SpatialAttention, BiLevelRoutingAttention, BiLevelRoutingAttention_nchw,
                   TripletAttention, CoordAtt, CBAM, BAMBlock, LSKBlock, ScConv, LAWDS, EMSConv, EMSConvP,
                   SEAttention, CPCA, Partial_conv3, FocalModulation, EfficientAttention, MPCA, deformable_LKA,
                   EffectiveSEModule, LSKA, SegNext_Attention, DAttention, MLCA, TransNeXt_AggregatedAttention,
                   FocusedLinearAttention, LocalWindowAttention, ChannelAttention_HSFPN, ELA_HSFPN, CA_HSFPN, CAA_HSFPN, 
                   DySample, CARAFE, CAA, ELA, CAFM, AFGCAttention, EUCB, ContrastDrivenFeatureAggregation, FSA}:
            c2 = ch[f]
            args = [c2, *args]
            # print(args)
        elif m in {SimAM, SpatialGroupEnhance}:
            c2 = ch[f]
        elif m is ContextGuidedBlock_Down:
            c2 = ch[f] * 2
            args = [ch[f], c2, *args]
        elif m is BiFusion:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [c1, c2]
        # --------------GOLD-YOLO--------------
        elif m in {SimFusion_4in, AdvPoolFusion}:
            c2 = sum(ch[x] for x in f)
        elif m is SimFusion_3in:
            c2 = args[0]
            if c2 != nc:  # if c2 not equal to number of classes (i.e. for Classify() output)
                c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [[ch[f_] for f_ in f], c2]
        elif m is IFM:
            c1 = ch[f]
            c2 = sum(args[0])
            args = [c1, *args]
        elif m is InjectionMultiSum_Auto_pool:
            c1 = ch[f[0]]
            c2 = args[0]
            args = [c1, *args]
        elif m is PyramidPoolAgg:
            c2 = args[0]
            args = [sum([ch[f_] for f_ in f]), *args]
        elif m is TopBasicLayer:
            c2 = sum(args[1])
        # --------------GOLD-YOLO--------------
        # --------------ASF--------------
        elif m is Zoom_cat:
            c2 = sum(ch[x] for x in f)
        elif m is Add:
            c2 = ch[f[-1]]
        elif m in {ScalSeq, DynamicScalSeq}:
            c1 = [ch[x] for x in f]
            c2 = make_divisible(args[0] * width, 8)
            args = [c1, c2]
        elif m is asf_attention_model:
            args = [ch[f[-1]]]
        # --------------ASF--------------
        elif m is SDI:
            args = [[ch[x] for x in f]]
        elif m is Multiply:
            c2 = ch[f[0]]
        elif m is FocusFeature:
            c1 = [ch[x] for x in f]
            c2 = int(c1[1] * 0.5 * 3)
            args = [c1, *args]
        elif m is DASI:
            c1 = [ch[x] for x in f]
            args = [c1, c2]
        elif m is CSMHSA:
            c1 = [ch[x] for x in f]
            c2 = ch[f[-1]]
            args = [c1, c2]
        elif m is CFC_CRB:
            c1 = ch[f]
            c2 = c1 // 2
            args = [c1, *args]
        elif m is SFC_G2:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {CGAFusion, CAFMFusion, SDFM, PSFM}:
            c2 = ch[f[1]]
            args = [c2, *args]
        elif m in {ContextGuideFusionModule}:
            c1 = [ch[x] for x in f]
            c2 = 2 * c1[1]
            args = [c1]
        # elif m in {PSA}:
        #     c2 = ch[f]
        #     args = [c2, *args]
        elif m in {SBA}:
            c1 = [ch[x] for x in f]
            c2 = c1[-1]
            args = [c1, c2]
        elif m in {WaveletPool}:
            c2 = ch[f] * 4
        elif m in {WaveletUnPool}:
            c2 = ch[f] // 4
        elif m in {CSPOmniKernel}:
            c2 = ch[f]
            args = [c2]
        elif m in {ChannelTransformer, PyramidContextExtraction}:
            c1 = [ch[x] for x in f]
            c2 = c1
            args = [c1]
        elif m in {RCM}:
            c2 = ch[f]
            args = [c2, *args]
        elif m in {DynamicInterpolationFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f]]
        elif m in {FuseBlockMulti}:
            c2 = ch[f[0]]
            args = [c2]
        elif m in {CrossLayerChannelAttention, CrossLayerSpatialAttention}:
            c2 = [ch[x] for x in f]
            args = [c2[0], *args]
        elif m in {FreqFusion}:
            c2 = ch[f[0]]
            args = [[ch[x] for x in f], *args]
        elif m in {DynamicAlignFusion}:
            c2 = args[0]
            args = [[ch[x] for x in f], c2]
        elif m in {ConvEdgeFusion}:
            c2 = make_divisible(min(args[0], max_channels) * width, 8)
            args = [[ch[x] for x in f], c2]
        elif m in {MutilScaleEdgeInfoGenetator}:
            c1 = ch[f]
            c2 = [make_divisible(min(i, max_channels) * width, 8) for i in args[0]]
            args = [c1, c2]
        elif m in {MultiScaleGatedAttn}:
            c1 = [ch[x] for x in f]
            c2 = min(c1)
            args = [c1]
        elif m in {WFU, MultiScalePCA, MultiScalePCA_Down}:
            c1 = [ch[x] for x in f]
            c2 = c1[0]
            args = [c1]
        elif m in {GetIndexOutput}:
            c2 = ch[f][args[0]]
        elif m is HyperComputeModule:
            c1, c2 = ch[f], args[0]
            c2 = make_divisible(min(c2, max_channels) * width, 8)
            args = [c1, c2, threshold]
        else:
            c2 = ch[f]
 
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            is_backbone = True
            m_ = m
            m_.backbone = True
        else:
            m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args)  # module
            t = str(m)[8:-2].replace('__main__.', '')  # module type
        m.np = sum(x.numel() for x in m_.parameters())  # number params
        m_.i, m_.f, m_.type = i + 4 if is_backbone else i, f, t  # attach index, 'from' index, type
        if verbose:
            LOGGER.info(f"{i:>3}{str(f):>20}{n_:>3}{m.np:10.0f}  {t:<60}{str(args):<50}")  # print
        save.extend(x % (i + 4 if is_backbone else i) for x in ([f] if isinstance(f, int) else f) if x != -1)  # append to savelist
        layers.append(m_)
        if i == 0:
            ch = []
        if isinstance(c2, list) and m not in {ChannelTransformer, PyramidContextExtraction, CrossLayerChannelAttention, CrossLayerSpatialAttention, MutilScaleEdgeInfoGenetator}:
            ch.extend(c2)
            for _ in range(5 - len(ch)):
                ch.insert(0, 0)
        else:
            ch.append(c2)
    return nn.Sequential(*layers), sorted(save)

第③步:yolov8.yaml文件修改   

在下述文件夹中创立yolov8-vanillanet.yaml

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# 0-P1/2
# 1-P2/4
# 2-P3/8
# 3-P4/16
# 4-P5/32

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, vanillanet_5, []]  # 4
  - [-1, 1, SPPF, [1024, 5]]  # 5

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 6
  - [[-1, 3], 1, Concat, [1]]  # 7 cat backbone P4
  - [-1, 3, C2f, [512]]  # 8

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']] # 9
  - [[-1, 2], 1, Concat, [1]]  # 10 cat backbone P3
  - [-1, 3, C2f, [256]]  # 11 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]] # 12
  - [[-1, 8], 1, Concat, [1]]  # 13 cat head P4
  - [-1, 3, C2f, [512]]  # 14 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]] # 15
  - [[-1, 5], 1, Concat, [1]]  # 16 cat head P5
  - [-1, 3, C2f, [1024]]  # 17 (P5/32-large)

  - [[11, 14, 17], 1, Detect, [nc]]  # Detect(P3, P4, P5)

第④步:验证是否加入成功   

将train.py中的配置文件进行修改,并运行  


🏋不是每一粒种子都能开花,但播下种子就比荒芜的旷野强百倍🏋

🍁YOLOv8入门+改进专栏🍁


 【YOLOv8改进系列】: 

【YOLOv8】YOLOv8结构解读

YOLOv8改进系列(1)----替换主干网络之EfficientViT 

YOLOv8改进系列(2)----替换主干网络之FasterNet

YOLOv8改进系列(3)----替换主干网络之ConvNeXt V2

YOLOv8改进系列(4)----替换C2f之FasterNet中的FasterBlock替换C2f中的Bottleneck 

YOLOv8改进系列(5)----替换主干网络之EfficientFormerV2 


;