上篇博客链接直达:攻克 Transformer & 注意力机制的查询、键和值 & 有无参数的Nadaraya-Watson核回归
选择不同的注意⼒评分函数 a 会导致不同的注意⼒汇聚操作。在本文章中,我们将介绍两个流⾏的评分函数,稍后将⽤他们来实现更复杂的注意⼒机制。
目录
(1)评分函数概念
上一篇博客,我们使⽤⾼斯核来对查询和键之间的关系建模。
我们可以将高斯核指数部分视为注意⼒评分函数(attention scoring function),简称评分函数(scoring function),然后把这个函数的输出结果输⼊到 softmax 函数中进⾏运算。通过上述步骤,我们将得到与键对应的值的概率分布(即注意力权重)。 最后,注意⼒汇聚的输出就是基于这些注意⼒权重的值的加权和。
从宏观来看,我们可以使⽤上述算法来实现图1 中的注意⼒机制框架。图1 说明了如何将注意⼒汇聚 的输出计算成为值的加权和,其中 a 表示注意力评分函数。由于注意⼒权重是概率分布,因此加权和其本质上是加权平均值。
图1 计算注意力汇聚的输出为值的加权和
评分函数公式:
(2)加性注意力
a) 公式
b) 草稿理解
注意:h是隐藏单元数
c) 完整代码
建议:自己调试,观看各个阶段的 Q, K, V 张量的尺寸大小的变化。
import matplotlib.pyplot as plt
import torch
from torch import nn
from d2l import torch as d2l
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
# 指定每个矩阵的有效长度
out_mask_1 = masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
# 使用二维张量,为矩阵样本中的每一行指定有效长度。
out_mask_2 = masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]]))
print("*************************mask_softmax*********************")
print(out_mask_1)
print(out_mask_2)
# 2、20、8、0.1
class AdditiveAttention(nn.Module):
"""加性注意力"""
def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
super(AdditiveAttention, self).__init__(**kwargs)
self.W_k = nn.Linear(key_size, num_hiddens, bias=False) # [2, 8]
self.W_q = nn.Linear(query_size, num_hiddens, bias=False) # [20, 8]
self.w_v = nn.Linear(num_hiddens, 1, bias=False) # [8, 1]
self.dropout = nn.Dropout(dropout) # 0.1 # 随机将10%的元素置为0
# torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2)), torch.Size([2, 10, 4]), torch.tensor([2, 6])
def forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_q(queries), self.W_k(keys) # [2, 1, 8], [2, 10, 8]
# 在维度扩展后,
# queries的形状:(batch_size,查询的个数,1,num_hidden)
# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
# 使用广播方式进行求和
features = queries.unsqueeze(2) + keys.unsqueeze(1)
# print(queries.unsqueeze(2), keys.unsqueeze(1)) # [2, 1, 1, 8], [2, 1, 10, 8]
# print(features) # [2, 1, 10, 8]
features = torch.tanh(features)
# self.w_v仅有一个输出,因此从形状中移除最后那个维度。
# scores的形状:(batch_size,查询的个数,“键-值”对的个数)
scores = self.w_v(features).squeeze(-1) # [2, 1, 10, 8]*[8, 1]=[2, 1, 10, 1]>>>[2, 1, 10]
# 第一个矩阵的每一行保留有效长度为2
# 第二个矩阵的每一行保留有效长度为6
self.attention_weights = masked_softmax(scores, valid_lens) # [2, 1, 10]
print("*************************self.attention_weights*********************")
print(self.attention_weights)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
output = torch.bmm(self.dropout(self.attention_weights), values) # [2, 1, 4]
return output
queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2))
# values的小批量,两个值矩阵是相同的
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(2, 1, 1) # [2, 10, 4]
# 定义序列的有效长度
valid_lens = torch.tensor([2, 6])
attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8, dropout=0.1)
attention.eval()
print("*************************Q,K,V*********************")
print(queries.size(), keys.size(), values.size())
output = attention(queries, keys, values, valid_lens)
print("*************************output*********************")
print(output.size())
print(output)
# 显示注意力权重特征图
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')
plt.show()
(3)缩放点积注意力
a) 公式
b) 草稿理解
c)完整代码
建议:自己调试,观看各个阶段的 Q, K, V 张量的尺寸大小的变化。
import math
import matplotlib.pyplot as plt
import torch
from torch import nn
from d2l import torch as d2l
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行 softmax 操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
class DotProductAttention(nn.Module):
"""缩放点积注意力"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
# 设置transpose_b=True为了交换keys的最后两个维度
scores = torch.bmm(queries, keys.transpose(1, 2)) / math.sqrt(d) # [2, 1, 10]
self.attention_weights = masked_softmax(scores, valid_lens)
return torch.bmm(self.dropout(self.attention_weights), values) # [2, 1, 4]
queries, keys = torch.normal(0, 1, (2, 1, 2)), torch.ones((2, 10, 2))
# print(keys.transpose(1, 2)) # 转置 [2, 2, 10]
# values的小批量,两个值矩阵是相同的
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(2, 1, 1) # [2, 10, 4]
valid_lens = torch.tensor([2, 6])
attention = DotProductAttention(dropout=0.5)
attention.eval()
output = attention(queries, keys, values, valid_lens)
print("*************************output*********************")
print(output.size())
print(output)
# 显示注意力权重特征图
d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')
plt.show()
(4)掩蔽softmax操作
softmax操作⽤于输出⼀个概率分布作为注意⼒权重。在某些情况下,并⾮所有的值都应该被纳⼊到注意⼒汇聚中。某些⽂本序列被填充了没有意义的特殊词元,为了仅将有意义的词元作为值来获取注意⼒汇聚,我们可以指定⼀个有效序列⻓度(即词元的个数), 以便在计算softmax时过滤掉超出指定范围的位置。通过这种⽅式,我们可以在下⾯的 masked_softmax 函数中实现这样的掩蔽softmax操作(masked softmax operation),其中任何超出有效⻓度的位置都被掩蔽置为0。
import matplotlib.pyplot as plt
import torch
from torch import nn
from d2l import torch as d2l
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
# 指定每个矩阵的有效长度
out_mask_1 = masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
# 使用二维张量,为矩阵样本中的每一行指定有效长度。
out_mask_2 = masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]]))
print("*************************mask_softmax*********************")
print(out_mask_1)
print(out_mask_2)
>>>output
*************************mask_softmax*********************
tensor([[[0.5607, 0.4393, 0.0000, 0.0000], # L=2
[0.6431, 0.3569, 0.0000, 0.0000]], # L=2[[0.4818, 0.2435, 0.2747, 0.0000], # L=3
[0.2330, 0.2912, 0.4758, 0.0000]]]) #L=3
tensor([[[1.0000, 0.0000, 0.0000, 0.0000], # L=1
[0.3486, 0.4044, 0.2470, 0.0000]], # L=3[[0.6019, 0.3981, 0.0000, 0.0000], # L=2
[0.2037, 0.1969, 0.2232, 0.3763]]]) # L=4可以指定矩阵的有效长度,也可以指定每一行的有效长度
(5)总结
- 将注意⼒汇聚的输出计算可以作为值的加权平均,选择不同的注意⼒评分函数会带来不同的注意⼒汇聚操作。
- 当查询和键是不同长度的⽮量时,可以使⽤可加性注意⼒评分函数。当它们的长度相同时,使⽤缩放的 “点-积”注意⼒评分函数的计算效率更⾼。
未完待续。。。
>>>如有疑问,欢迎评论区一起探讨