死锁避免方法
- 死锁产生的四个必要条件
1.互斥条件:一个资源每次只能被一个进程使用
2.请求与保持条件:一个进程因请求资源而阻塞时,对已获取的资源保持不放
3.不剥夺条件:进程已获得的资源,在未使用完之前,不能强行剥夺
4.循环等待条件:若干进程之间形成一种头尾相接的循环等待资源关系 - 破坏其中的任意一个或多个条件就可以避免死锁发生
synchronized 与 Lock 对比
- Lock是显式锁(手动开启和关闭锁),synchronized是隐式锁,出了作用域自动释放
- Lock只有代码锁,synchronized有代码块和方法锁
- 使用Lock锁,JVM将花费较少的时间来调度线程,性能更好,具有更好的扩展性(提供更多的子类)
- 优先使用顺序:Lock > 同步代码块(已经进入了方法体,分配了相应资源)> 同步方法(在方法体之外)
生产者消费者问题
package com.tu.gaoji;
public class TestPC {
public static void main(String[] args) {
SynContainer container = new SynContainer();
new Productor(container).start();
new Consumer(container).start();
}
}
class Productor extends Thread{
SynContainer container;
public Productor(SynContainer container){
this.container = container;
}
@Override
public void run() {
for (int i = 0; i < 100; i++) {
try {
container.push(new Chicken(i));
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
System.out.println("生产了第"+i+"只鸡");
}
}
}
class Consumer extends Thread{
SynContainer container;
public Consumer(SynContainer container){
this.container = container;
}
@Override
public void run() {
for (int i = 0; i < 100; i++) {
try {
Thread.sleep(1000);
System.out.println("消费了"+container.pop().id+"只鸡");
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
}
class Chicken{
int id;
public Chicken(int id){
this.id = id;
}
}
class SynContainer{
Chicken[] chickens = new Chicken[10];
int count = 0;
public synchronized void push(Chicken chicken) throws InterruptedException {
if (count == chickens.length){
this.wait();
}
chickens[count++] = chicken;
this.notifyAll();
}
public synchronized Chicken pop() throws InterruptedException {
if (count == 0){
this.wait();
}
Chicken chicken = chickens[--count];
this.notifyAll();
return chicken;
}
}
package com.tu.gaoji;
public class TestPC2 {
public static void main(String[] args) {
TV tv = new TV();
new Player(tv).start();
new Watcher(tv).start();
}
}
class Player extends Thread{
TV tv;
public Player(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
if(i % 2 == 0){
try {
this.tv.play("喜羊羊与灰太狼");
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}else {
try {
this.tv.play("怎敌她千娇百媚");
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
}
}
class Watcher extends Thread{
TV tv;
public Watcher(TV tv){
this.tv = tv;
}
@Override
public void run() {
for (int i = 0; i < 20; i++) {
try {
this.tv.watch();
} catch (InterruptedException e) {
throw new RuntimeException(e);
}
}
}
}
class TV{
String voice;
boolean flag = true;
public synchronized void play(String voice) throws InterruptedException {
if (!flag){
this.wait();
}
System.out.println("演员表演了:"+voice);
this.notifyAll();
this.voice = voice;
this.flag = !flag;
}
public synchronized void watch() throws InterruptedException {
if (flag){
this.wait();
}
System.out.println("观看了:"+voice);
this.notifyAll();
this.flag = !this.flag;
}
}
线程池
- 背景:经常创建和销毁、使用量特别大的资源,比如并发情况下的线程,对性能影响很大
- 思路:提前创建好多个线程,放入线程池中,使用时直接获取,使用完放回池中,可以避免频繁创建销毁、实现重复利用。类似生活中的公共交通工具
- 好处:
1.提高响应速度(减少了创建新线程的时间)
2.降低资源消耗(重复利用线程池中的线程,不需要每次都创建)
3.便于线程管理:
corePoolSize:核心池的大小
maximumPoolSize:最大线程数
keepAliveTime:线程没有任务时最多保持多长时间后会终止 - ExecutorService:真正的线程池接口。常见子类ThreadPoolExecutor
- void execute(Runnable command):执行任务/命令,没有返回值,一般用来执行Runnable
- Future submit(Callable task):执行任务,有返回值,一般执行Callable
- void shutdown():关闭连接池
- Executors:工具类、线程池的工厂类,用于创建并返回不同类型的线程池
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class TestPool {
public static void main(String[] args) {
ExecutorService service = Executors.newFixedThreadPool(10);
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.execute(new MyThread());
service.shutdown();
}
}
class MyThread implements Runnable{
@Override
public void run() {
System.out.println(Thread.currentThread().getName());
}
}
回顾总结
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.FutureTask;
public class ThreadNew {
public static void main(String[] args) throws ExecutionException, InterruptedException {
new MyThread1().start();
MyThread2 myThread2 = new MyThread2();
new Thread(myThread2).start();
FutureTask<Integer> futureTask = new FutureTask<Integer>(new MyThread3());
new Thread(futureTask).start();
Integer i = futureTask.get();
System.out.println(i);
}
}
class MyThread1 extends Thread{
@Override
public void run() {
System.out.println("MyThread1");
}
}
class MyThread2 implements Runnable{
@Override
public void run() {
System.out.println("MyThread2");
}
}
class MyThread3 implements Callable<Integer> {
@Override
public Integer call() throws Exception {
System.out.println("MyThread3");
return 1;
}
}