Bootstrap

深度学习练手小例子——cifar10数据集分类问题

CIFAR-10 是一个经典的计算机视觉数据集,广泛用于图像分类任务。它包含 10 个类别的 60,000 张彩色图像,每张图像的大小是 32x32 像素。数据集被分为 50,000 张训练图像和 10,000 张测试图像。每个类别包含 6,000 张图像,具体类别包括:

  • 飞机 (airplane)
  • 汽车 (automobile)
  • 鸟 (bird)
  • 猫 (cat)
  • 鹿 (deer)
  • 狗 (dog)
  • 青蛙 (frog)
  • 马 (horse)
  • 船 (ship)
  • 卡车 (truck)

CIFAR-10 是一个多类分类问题,目标是根据图像内容(例如,物体的形状、颜色等特征)预测图像所属的类别。图像分类模型(如卷积神经网络 CNN)常用于这个任务,通过学习图像的空间特征来做出预测。

来看看实现过程:

import torch
import torchvision.datasets
from torch.utils.data import DataLoader
from torch import nn

train_data = torchvision.datasets.CIFAR10(root="../input/cifar10-python",train=True,transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10(root="../input/cifar10-python",train=False,transform=torchvision.transforms.ToTensor(),
                                          download=True)
print(f"train length: {len(train_data)}")
print(f"test length: {len(test_data)}")
Files already downloaded and verified
Files already downloaded and verified
train length: 50000
test length: 10000

找到了CIFAR10数据集并且导入进来,用了三个卷积层的网络模型来训练,进行了10轮训练。

train_dataloader = DataLoader(train_data,batch_size=64)
test_dataloader = DataLoader(test_data,batch_size=64)

class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
    def forward(self,x):
        x = self.model(x)
        return x
mynet = CNN()
mynet = mynet.cuda()

loss_func = nn.CrossEntropyLoss().cuda()
learning_rate = 0.0001
optimizer = torch.optim.Adam(mynet.parameters(),lr=learning_rate)
total_train = 0
total_test = 0
epoch = 10

for i in range(epoch):
    print(f"----No.{i+1} training...-----")
    mynet.train()
    for data in train_dataloader:
        imgs, targets = data
        imgs = imgs.cuda()
        targets = targets.cuda()
        outputs = mynet(imgs)
        loss = loss_func(outputs,targets)
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train = total_train + 1
        if total_train % 100 == 0:
            print(f"训练次数:{total_train},loss:{loss.item()}")
    #测试
    mynet.eval()
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_dataloader:
            imgs, targets = data
            imgs = imgs.cuda()
            targets = targets.cuda()
            outputs = mynet(imgs)
            loss = loss_func(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    print(f"测试集的loss:{total_test_loss},准确率:{total_accuracy/len(test_data)}")
    torch.save(mynet, f'myCNN_{i+1}p.pth')
    print("模型保存成功")
----No.1 training...-----
训练次数:100,loss:2.0156445503234863
训练次数:200,loss:1.999146580696106
训练次数:300,loss:1.860052466392517
训练次数:400,loss:1.7510318756103516
训练次数:500,loss:1.7712416648864746
训练次数:600,loss:1.6994789838790894
训练次数:700,loss:1.7278780937194824
测试集的loss:257.74497163295746,准确率:0.41990000009536743
模型保存成功
----No.2 training...-----
训练次数:800,loss:1.515326976776123
训练次数:900,loss:1.485555648803711
训练次数:1000,loss:1.6138449907302856
训练次数:1100,loss:1.7650551795959473
训练次数:1200,loss:1.4380264282226562
训练次数:1300,loss:1.3843588829040527
训练次数:1400,loss:1.5849156379699707
训练次数:1500,loss:1.5038520097732544
测试集的loss:236.6359145641327,准确率:0.47110000252723694
模型保存成功
----No.3 training...-----
训练次数:1600,loss:1.4474828243255615
训练次数:1700,loss:1.4474865198135376
训练次数:1800,loss:1.7310973405838013
训练次数:1900,loss:1.5719612836837769
训练次数:2000,loss:1.6212022304534912
训练次数:2100,loss:1.2924069166183472
训练次数:2200,loss:1.256321907043457
训练次数:2300,loss:1.560215711593628
测试集的loss:221.27214550971985,准确率:0.5011000037193298
模型保存成功
----No.4 training...-----
训练次数:2400,loss:1.4557472467422485
训练次数:2500,loss:1.2620049715042114
训练次数:2600,loss:1.4703019857406616
训练次数:2700,loss:1.4131494760513306
训练次数:2800,loss:1.303225040435791
训练次数:2900,loss:1.4961038827896118
训练次数:3000,loss:1.2810102701187134
训练次数:3100,loss:1.337519645690918
测试集的loss:210.63251876831055,准确率:0.5252999663352966
模型保存成功
----No.5 training...-----
训练次数:3200,loss:1.1311390399932861
训练次数:3300,loss:1.2354803085327148
训练次数:3400,loss:1.2415772676467896
训练次数:3500,loss:1.4213279485702515
训练次数:3600,loss:1.4151396751403809
训练次数:3700,loss:1.2579320669174194
训练次数:3800,loss:1.201486349105835
训练次数:3900,loss:1.287066102027893
测试集的loss:202.65885722637177,准确率:0.5475999712944031
模型保存成功
----No.6 training...-----
训练次数:4000,loss:1.2759090662002563
训练次数:4100,loss:1.3534283638000488
训练次数:4200,loss:1.4388338327407837
训练次数:4300,loss:1.1126259565353394
训练次数:4400,loss:1.072700023651123
训练次数:4500,loss:1.2942607402801514
训练次数:4600,loss:1.3078550100326538
测试集的loss:195.93554836511612,准确率:0.5615000128746033
模型保存成功
----No.7 training...-----
训练次数:4700,loss:1.3510404825210571
训练次数:4800,loss:1.3887534141540527
训练次数:4900,loss:1.2628172636032104
训练次数:5000,loss:1.3063734769821167
训练次数:5100,loss:0.9366315007209778
训练次数:5200,loss:1.208983063697815
训练次数:5300,loss:1.0933520793914795
训练次数:5400,loss:1.2654058933258057
测试集的loss:190.015959918499,准确率:0.5735999941825867
模型保存成功
----No.8 training...-----
训练次数:5500,loss:1.1543941497802734
训练次数:5600,loss:1.0732381343841553
训练次数:5700,loss:1.179479718208313
训练次数:5800,loss:1.0669857263565063
训练次数:5900,loss:1.3145105838775635
训练次数:6000,loss:1.4563915729522705
训练次数:6100,loss:1.0026252269744873
训练次数:6200,loss:0.9769096374511719
测试集的loss:184.76930475234985,准确率:0.5831999778747559
模型保存成功
----No.9 training...-----
训练次数:6300,loss:1.2531676292419434
训练次数:6400,loss:1.0582406520843506
训练次数:6500,loss:1.467718482017517
训练次数:6600,loss:0.9885475635528564
训练次数:6700,loss:0.9887412190437317
训练次数:6800,loss:1.1251451969146729
训练次数:6900,loss:1.0831143856048584
训练次数:7000,loss:0.8735517263412476
测试集的loss:180.18007707595825,准确率:0.5949000120162964
模型保存成功
----No.10 training...-----
训练次数:7100,loss:1.1680148839950562
训练次数:7200,loss:0.9758849740028381
训练次数:7300,loss:1.1076891422271729
训练次数:7400,loss:0.8192071914672852
训练次数:7500,loss:1.2766807079315186
训练次数:7600,loss:1.2046217918395996
训练次数:7700,loss:0.8206453323364258
训练次数:7800,loss:1.1484739780426025
测试集的loss:176.2480058670044,准确率:0.6036999821662903
模型保存成功

拿网上下载的几张图片测试一下,注意路径

import torch
import torchvision
from PIL import Image
from torch import nn

# 10分类,分别为airplane'= 0 'automobile'= 1 'bird'= 2'cat'= 3 'deer'=  4 'dog'=  5 'frog'= 6 'horse'= 7 'ship'= 8 'truck'= 9
image_path = "/kaggle/input/testdata/bird.jpg"
image = Image.open(image_path)
transform = torchvision.transforms.Compose([torchvision.transforms.Resize((32,32)),
                                            torchvision.transforms.ToTensor()])
image = transform(image)
image = torch.reshape(image,(1,3,32,32))

class CNN(nn.Module):
    def __init__(self):
        super(CNN,self).__init__()
        self.model = nn.Sequential(
            nn.Conv2d(3,32,5,1,2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 32, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Conv2d(32, 64, 5, 1, 2),
            nn.MaxPool2d(2),
            nn.Flatten(),
            nn.Linear(64*4*4,64),
            nn.Linear(64,10)
        )
    def forward(self,x):
        x = self.model(x)
        return x

model = torch.load("/kaggle/working/myCNN_10p.pth",map_location=torch.device('cpu'))
model.eval()
with torch.no_grad():
    output = model(image)
print(output.argmax(1))
tensor([2])

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;