def dpskr1bj(self, event=None): # deepseek-r1
def deepseekr1_th():
getmyques = self.stext.get(1.0, "end") # -------bd # import wenxin_api # 可以通过"pip install wenxin-api"命令安装 # pip install --upgrade wenxin-api # https://wenxin.baidu.com/wenxin/docs#2l6tgx5rc # runingpb()
url = "https://api.siliconflow.cn/v1/chat/completions"
payload = {
"model": "deepseek-ai/DeepSeek-R1",
"messages": [
{
"role": "user",
"content": getmyques
}
],
"stream": False, #如果已设置,则令牌在可用时将作为服务器发送事件返回。流以数据终止:[完成]
"max_tokens": 4096,#要生成的最大令牌数。
"temperature": 1,#0.7 确定响应中的随机程度。
"top_p": 0.7,#指定模型输出的多样性。与温度相似,但更精确。
"top_k": 50,#从前k个令牌中采样。有助于加快生成过程,并可以提高生成文本的质量。
"frequency_penalty": 0,#0.5 通过惩罚已经频繁使用的单词来降低模型行中重复单词的可能性。
"n": 1,
"response_format": {"type": "text"},
}
headers = {
"Authorization": "Bearer sk-kjuqzpegevynpfofkfueyptglajkvlaxpmvoiefnglakban",
"Content-Type": "application/json"
}
response = requests.request("POST", url, json=payload, headers=headers)
# print(response.text)
wendadpskr1 = response.json()['choices'][0]['message']['content']
print(wendadpskr1)
# print(wendadpsk)
with open('dpskr1logb.txt', "a", encoding='UTF-8') as out_fadv:
out_fadv.write(wendadpskr1)
# deepseek_th()
time.sleep(3)
with open('dpskr1logb.txt', "r", encoding='UTF-8') as out_fadv2:
# with open('dpsklogb.txt', "rt", encoding='UTF-8') as out_fadv2:
wxhdadv = out_fadv2.read()
self.totext.delete(1.0, 'end')
self.totext.insert(1.0, wxhdadv)
time.sleep(3)
os.remove('dpskr1logb.txt')
self.totext.delete(1.0, 'end')
self.totext.insert(1.0, 'deepseek-r1-siliconflow下载答案中,耐心等待......')
t2wxdsr1 = Thread(target=deepseekr1_th)
t2wxdsr1.start()
deepseek api r1
"stream": False, #如果已设置,则令牌在可用时将作为服务器发送事件返回。流以数据终止:[完成]pan.baidu.com/s/1ZGB1MwL51L_bDkuqBhQuYQ?pwd=1029
"max_tokens": 4096,#要生成的最大令牌数。
"temperature": 1,#0.7 确定响应中的随机程度。
"top_p": 0.7,#指定模型输出的多样性。与温度相似,但更精确。
"top_k": 50,#从前k个令牌中采样。有助于加快生成过程,并可以提高生成文本的质量。
"frequency_penalty": 0,#0.5 通过惩罚已经频繁使用的单词来降低模型行中重复单词的可能性。
"n": 1,
def dpskdeepseek3(self, event=None): # deepseek v3
def deepseek_th():
getmyques = self.stext.get(1.0, "end") # -------bd # import wenxin_api # 可以通过"pip install wenxin-api"命令安装 # pip install --upgrade wenxin-api # https://wenxin.baidu.com/wenxin/docs#2l6tgx5rc # runingpb()
url = "https://api.deepseek.com/chat/completions" #v3
# url = "https://api.deepseek.com/beta" #r1
# https://api-docs.deepseek.com/zh-cn/api/create-chat-completion
# https://platform.deepseek.com/usage
payload = json.dumps({
"messages": [
{
"content": getmyques,
"role": "system",
"prefix": True
}
],
"model": "deepseek-chat",
"frequency_penalty": 0,
"max_tokens": 4096, # 2048
"presence_penalty": 0,
"response_format": {
"type": "text"
},
"stop": None,
"stream": False,
"stream_options": None,
"temperature": 1,
"top_p": 1,
"tools": None,
"tool_choice": "none",
"logprobs": False,
"top_logprobs": None
})
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': 'Bearer sk-0b6ca63e126d411aaf7ffa7947aa5b1'
}
response = requests.request("POST", url, headers=headers, data=payload)
print(response.text)
wendadpsk = response.json()['choices'][0]['message']['content']
# print(wendadpsk)
with open('dpsklogb.txt', "a", encoding='UTF-8') as out_fadv:
out_fadv.write(wendadpsk)
# deepseek_th()
time.sleep(3)
with open('dpsklogb.txt', "r", encoding='UTF-8') as out_fadv2:
# with open('dpsklogb.txt', "rt", encoding='UTF-8') as out_fadv2:
wxhdadv = out_fadv2.read()
self.totext.delete(1.0, 'end')
self.totext.insert(1.0, wxhdadv)
time.sleep(2)
os.remove('dpsklogb.txt')
self.totext.delete(1.0, 'end')
self.totext.insert(1.0, 'deepseek-v3-下载答案中,耐心等待......')
t2wxds = Thread(target=deepseek_th)
t2wxds.start()
deepseek api v3