Bootstrap

C# OpenCvSharp Yolov8 Face Landmarks 人脸特征检测

介绍

github地址:

https://github.com/derronqi/yolov8-face

yolov8 face detection with landmark

效果

373bb534cc25b22c3490734b3dae6e4e.png

a9b0b992872310f10ddc4c24cfad2950.png

模型信息

Model Properties
-------------------------
description:Ultralytics YOLOv8-lite-t-pose model trained on widerface.yaml
author:Ultralytics
kpt_shape:[5, 3]
task:pose
license:AGPL-3.0 https://ultralytics.com/license
version:8.0.85
stride:32
batch:1
imgsz:[640, 640]
names:{0: 'face'}
---------------------------------------------------------------

Inputs
-------------------------
name:images
tensor:Float[1, 3, 640, 640]
---------------------------------------------------------------

Outputs
-------------------------
name:output0
tensor:Float[1, 80, 80, 80]
name:884
tensor:Float[1, 80, 40, 40]
name:892
tensor:Float[1, 80, 20, 20]
---------------------------------------------------------------

项目

VS2022

.net framework 4.8

OpenCvSharp 4.8

Microsoft.ML.OnnxRuntime 1.16.2

355d62ba74aa53a3416f3d495da4efb5.png

代码

using OpenCvSharp;
using OpenCvSharp.Dnn;
using System;
using System.Collections.Generic;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
 
namespace OpenCvSharp_Yolov8_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }
 
        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";
        string startupPath;
 
        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;
        string model_path;
        Mat image;
        Mat result_image;
 
        Net opencv_net;
        Mat BN_image;
 
        StringBuilder sb = new StringBuilder();
 
        int reg_max = 16;
        int num_class = 1;
 
        int inpWidth = 640;
        int inpHeight = 640;
 
        float score_threshold = 0.25f;
        float nms_threshold = 0.5f;
 
        private void Form1_Load(object sender, EventArgs e)
        {
            startupPath = System.Windows.Forms.Application.StartupPath;
            model_path = startupPath + "\\yolov8-lite-t.onnx";
            //初始化网络类,读取本地模型
            opencv_net = CvDnn.ReadNetFromOnnx(model_path);
        }
 
        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;
            pictureBox1.Image = null;
            image_path = ofd.FileName;
            pictureBox1.Image = new Bitmap(image_path);
            textBox1.Text = "";
            image = new Mat(image_path);
            pictureBox2.Image = null;
        }
 
        private void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            int newh = 0, neww = 0, padh = 0, padw = 0;
            Mat resize_img = Common.ResizeImage(image, inpHeight, inpWidth, ref newh, ref neww, ref padh, ref padw);
            float ratioh = (float)image.Rows / newh, ratiow = (float)image.Cols / neww;
 
            //数据归一化处理
            BN_image = CvDnn.BlobFromImage(resize_img, 1 / 255.0, new OpenCvSharp.Size(inpWidth, inpHeight), new Scalar(0, 0, 0), true, false);
 
            //配置图片输入数据
            opencv_net.SetInput(BN_image);
 
            //模型推理,读取推理结果
            Mat[] outs = new Mat[3] { new Mat(), new Mat(), new Mat() };
            string[] outBlobNames = opencv_net.GetUnconnectedOutLayersNames().ToArray();
 
            dt1 = DateTime.Now;
            opencv_net.Forward(outs, outBlobNames);
            dt2 = DateTime.Now;
 
            List<Rect> position_boxes = new List<Rect>();
            List<float> confidences = new List<float>();
            List<List<OpenCvSharp.Point>> landmarks = new List<List<OpenCvSharp.Point>>();
            Common.GenerateProposal(inpHeight, inpWidth, reg_max, num_class, score_threshold, 40, 40, outs[0], position_boxes, confidences, landmarks, image.Rows, image.Cols, ratioh, ratiow, padh, padw);
            Common.GenerateProposal(inpHeight, inpWidth, reg_max, num_class, score_threshold, 20, 20, outs[1], position_boxes, confidences, landmarks, image.Rows, image.Cols, ratioh, ratiow, padh, padw);
            Common.GenerateProposal(inpHeight, inpWidth, reg_max, num_class, score_threshold, 80, 80, outs[2], position_boxes, confidences, landmarks, image.Rows, image.Cols, ratioh, ratiow, padh, padw);
 
            //NMS非极大值抑制
            int[] indexes = new int[position_boxes.Count];
            CvDnn.NMSBoxes(position_boxes, confidences, score_threshold, nms_threshold, out indexes);
 
            List<Rect> re_result = new List<Rect>();
            List<List<OpenCvSharp.Point>> re_landmarks = new List<List<OpenCvSharp.Point>>();
            List<float> re_confidences = new List<float>();
 
            for (int i = 0; i < indexes.Length; i++)
            {
                int index = indexes[i];
                re_result.Add(position_boxes[index]);
                re_landmarks.Add(landmarks[index]);
                re_confidences.Add(confidences[index]);
            }
 
            if (re_result.Count > 0)
            {
                sb.Clear();
                sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
                sb.AppendLine("--------------------------");
 
                //将识别结果绘制到图片上
                result_image = image.Clone();
 
                for (int i = 0; i < re_result.Count; i++)
                {
                    Cv2.Rectangle(result_image, re_result[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);
 
                    Cv2.PutText(result_image, "face-" + re_confidences[i].ToString("0.00"),
                        new OpenCvSharp.Point(re_result[i].X, re_result[i].Y - 10),
                        HersheyFonts.HersheySimplex, 1, new Scalar(0, 0, 255), 2);
 
                    foreach (var item in re_landmarks[i])
                    {
                        Cv2.Circle(result_image, item, 4, new Scalar(0, 255, 0), -1);
                    }
 
                    sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
                        , "face"
                        , re_confidences[i].ToString("0.00")
                        , re_result[i].TopLeft.X
                        , re_result[i].TopLeft.Y
                        , re_result[i].BottomRight.X
                        , re_result[i].BottomRight.Y
                        ));
                }
 
                pictureBox2.Image = new Bitmap(result_image.ToMemoryStream());
                textBox1.Text = sb.ToString();
 
            }
            else
            {
                textBox1.Text = "无信息";
            }
        }
    }
}
;