卷积神经网络为什么适合图像处理?
神经网络的本质就在于做信息形式的变换,而要想做数据的处理,首要解决的问题就是如何将数据张量化,问题就在于卷积神经网络要处理的数据必须是向量形式,对于图像这种数据类型来说,如果将其展开成一维的向量,且不说得到向量的维数过高,网络太深导致网络中参数太多,图像中的空间信息也会丢失。
而卷积神经网络能够用卷积的方式从原信息中提取"部分特定的信息(信息跟卷积核相关)",且对于二维的图像来说是原生支持的(不需要处理),这就保留了图像中的空间信息,而空间信息是具有可平移性质的.。
并且卷积神经网络的参数就只是卷积核的参数以及偏置(Bias),而卷积核的参数可以做到共享,卷积核也可以用多个,从多个角度对原图像解读。
这就是卷积神经网络的几个特点:局部感知,参数共享,多核,平移不变性正是因为这些特点,在图像领域处理上,卷积神经网络取代了人工神经网络。卷积神经网络 (CNN) 是当今最流行的模型之一。
这种神经网络计算模型使用多层感知器的变体,并包含一个或多个可以完全连接或池化的卷积层。这些卷积层创建了记录图像区域的特征图,该区域最终被分成矩形并发送出去进行非线性处理。
优点:图像识别问题的非常高的准确性。自动检测重要特征,无需任何人工监督。权重共享。缺点:CNN 不对物体的位置和方向进行编码。缺乏对输入数据空间不变的能力。需要大量的训练数据。
谷歌人工智能写作项目:神经网络伪原创
如何通过人工神经网络实现图像识别
人工神经网络(Artificial Neural Networks)(简称ANN)系统从20 世纪40 年代末诞生至今仅短短半个多世纪,但由于他具有信息的分布存储、并行处理以及自学习能力等优点,已经在信息处理、模式识别、智能控制及系统建模等领域得到越来越广泛的应用写作猫。
尤其是基于误差反向传播(Error Back Propagation)算法的多层前馈网络(Multiple-Layer Feedforward Network)(简称BP 网络),可以以任意精度逼近任意的连续函数,所以广泛应用于非线性建模、函数逼近、模式分类等方面。
目标识别是模式识别领域的一项传统的课题,这是因为目标识别不是一个孤立的问题,而是模式识别领域中大多数课题都会遇到的基本问题,并且在不同的课题中,由于具体的条件不同,解决的方法也不尽相同,因而目标识别的研究仍具有理论和实践意义。
这里讨论的是将要识别的目标物体用成像头(红外或可见光等)摄入后形成的图像信号序列送入计算机,用神经网络识别图像的问题。
一、BP 神经网络BP 网络是采用Widrow-Hoff 学习算法和非线性可微转移函数的多层网络。一个典型的BP 网络采用的是梯度下降算法,也就是Widrow-Hoff 算法所规定的。
backpropagation 就是指的为非线性多层网络计算梯度的方法。一个典型的BP 网络结构如图所示。我们将它用向量图表示如下图所示。
其中:对于第k 个模式对,输出层单元的j 的加权输入为该单元的实际输出为而隐含层单元i 的加权输入为该单元的实际输出为函数f 为可微分递减函数其算法描述如下:(1)初始化网络及学习参数,如设置网络初始权矩阵、学习因子等。
(2)提供训练模式,训练网络,直到满足学习要求。(3)前向传播过程:对给定训练模式输入,计算网络的输出模式,并与期望模式比较,若有误差,则执行(4);否则,返回(2)。
(4)后向传播过程:a. 计算同一层单元的误差;b. 修正权值和阈值;c. 返回(2)二、 BP 网络隐层个数的选择对于含有