自定义数据集(voc格式):
转换后数据集(coco格式):
# coding:utf-8
# pip install lxml
import os
import glob
import json
import shutil
import numpy as np
import xml.etree.ElementTree as ET
from PIL import Image
START_BOUNDING_BOX_ID = 1
def get(root, name):
return root.findall(name)
def get_and_check(root, name, length):
vars = root.findall(name)
if len(vars) == 0:
raise NotImplementedError('Can not find %s in %s.' % (name, root.tag))
if length > 0 and len(vars) != length:
raise NotImplementedError('The size of %s is supposed to be %d, but is %d.' % (name, length, len(vars)))
if length == 1:
vars = vars[0]
return vars
def convert(xml_list, json_file, sign):
json_dict = {"info": ['none'], "license": ['none'], "images": [], "annotations": [], "categories": []}
categories = pre_define_categories.copy()
bnd_id = START_BOUNDING_BOX_ID
all_categories = {}
for index, line in enumerate(xml_list):
# print("Processing %s"%(line))
xml_f = line
tree = ET.parse(xml_f)
root = tree.getroot()
filename = os.path.basename(xml_f)[:-4] + ".jpg"
image_path = dir_images + filename
img = Image.open(image_path)
if sign == 1:
img.save(img_train_path + filename)
if sign == 2:
img.save(img_val_path + filename)
if sign == 3:
img.save(img_test_path + filename)
image_id = filename.split('.')[0][-3:]
# print('filename is {}'.format(image_id))
size = get_and_check(root, 'size', 1)
width = int(get_and_check(size, 'width', 1).text)
height = int(get_and_check(size, 'height', 1).text)
image = {'file_name': filename, 'height': height, 'width': width, 'id': image_id}
json_dict['images'].append(image)
## Cruuently we do not support segmentation
# segmented = get_and_check(root, 'segmented', 1).text
# assert segmented == '0'
for obj in get(root, 'object'):
category = get_and_check(obj, 'name', 1).text
if category in all_categories:
all_categories[category] += 1
else:
all_categories[category] = 1
if category not in categories:
if only_care_pre_define_categories:
continue
new_id = len(categories) + 1
print(
"[warning] category '{}' not in 'pre_define_categories'({}), create new id: {} automatically".format(
category, pre_define_categories, new_id))
categories[category] = new_id
category_id = categories[category]
bndbox = get_and_check(obj, 'bndbox', 1)
xmin = int(float(get_and_check(bndbox, 'xmin', 1).text))
ymin = int(float(get_and_check(bndbox, 'ymin', 1).text))
xmax = int(float(get_and_check(bndbox, 'xmax', 1).text))
ymax = int(float(get_and_check(bndbox, 'ymax', 1).text))
assert (xmax > xmin), "xmax <= xmin, {}".format(line)
assert (ymax > ymin), "ymax <= ymin, {}".format(line)
o_width = abs(xmax - xmin)
o_height = abs(ymax - ymin)
ann = {'area': o_width * o_height, 'iscrowd': 0, 'image_id':
image_id, 'bbox': [xmin, ymin, o_width, o_height],
'category_id': category_id, 'id': bnd_id, 'ignore': 0,
'segmentation': []}
json_dict['annotations'].append(ann)
bnd_id = bnd_id + 1
for cate, cid in categories.items():
cat = {'supercategory': 'none', 'id': cid, 'name': cate}
json_dict['categories'].append(cat)
json_fp = open(json_file, 'w')
json_str = json.dumps(json_dict)
json_fp.write(json_str)
json_fp.close()
print("------------create {} done--------------".format(json_file))
print("find {} categories: {} -->>> your pre_define_categories {}: {}".format(len(all_categories),
all_categories.keys(),
len(pre_define_categories),
pre_define_categories.keys()))
print("category: id --> {}".format(categories))
print(categories.keys())
print(categories.values())
if __name__ == '__main__':
# xml标注文件夹
xml_dir = '自己数据集的xml文件路径'
# 数据集图片路径
dir_images = '自己数据集的image文件路径'
img_train_path = 'train/'
img_val_path = 'val/'
img_test_path = 'test/'
# 训练数据的josn文件
save_json_train = 'annotations/train.json'
# 验证数据的josn文件
save_json_val = 'annotations/val.json'
# 验证数据的test文件
save_json_test = 'annotations/test.json'
# 类别,如果是多个类别,往classes中添加类别名字即可,比如['dog', 'person', 'cat']
classes = ['dog', 'person', 'cat']
pre_define_categories = {}
for i, cls in enumerate(classes):
pre_define_categories[cls] = i + 1
only_care_pre_define_categories = True
# 训练数据集比例
train_ratio = 0.8
val_ratio = 0.1
print('xml_dir is {}'.format(xml_dir))
xml_list = glob.glob(xml_dir + "/*.xml")
xml_list = np.sort(xml_list)
# print('xml_list is {}'.format(xml_list))
np.random.seed(100)
np.random.shuffle(xml_list)
train_num = int(len(xml_list) * train_ratio)
val_num = int(len(xml_list) * val_ratio)
print('训练样本数目是 {}'.format(train_num))
print('验证样本数目是 {}'.format(val_num))
print('测试样本数目是 {}'.format(len(xml_list) - train_num - val_num))
xml_list_val = xml_list[:val_num]
xml_list_train = xml_list[val_num:train_num + val_num]
xml_list_test = xml_list[train_num + val_num:]
# 对训练数据集对应的xml进行coco转换
convert(xml_list_train, save_json_train , sign = 1)
# 对验证数据集的xml进行coco转换
convert(xml_list_val, save_json_val, sign = 2)
# 对测试数据集的xml进行coco转换
convert(xml_list_test, save_json_test, sign = 3)