Bootstrap

MySQL优化学习笔记

- - -
- 一、MySQL架构介绍 -
01_课程简介 02_MySQL简介 03_RPM安装
04_ROOT密码设置和开机自启动 05_安装位置 06_修改字符集
07_MySQL配置文件 08_MySQL逻辑架构简介 09_存储引擎简介
- 二、索引优化分析 -
10_SQL性能下降原因 11_SQL执行加载顺序 12_七种JOIN理论
13_七种JOIN的SQL编写 14_索引是什么 15_索引优劣势
16_索引分类和建索引命令语句 17_索引结构与检索原理 18_哪些情况适合建索引
19_哪些情况不适合建索引 20_性能分析前提知识 21_explain使用简介
22_explain之id介绍 23_explain之select_type和table介绍 24_explain之type介绍
25_explain之possible_keys和key介绍 26_explain之key_len介绍 27_explain之ref介绍
28_explain之rows介绍 29_explain之Extra介绍 30_explain之热身Case
31_索引单表优化案例 32_索引两表优化案例 33_索引三表优化案例
34_索引失效1-跳过复合索引中间列 35_索引失效2-索引列上做额外操作 36_索引失效3-限定复合索引某列的范围
37_索引失效4-select * 38_索引失效5-!=或者<> 39_索引失效6-is null或者is not null
40_索引失效7-like以通配符%开头字符串 41_索引失效8-数目字符串不加单引号 42_索引失效9-用关键字OR
43_索引失效10-小总结 44_索引面试题分析 45_索引优化答疑补充和总结口诀
- 三、查询截取分析 -
46_小表驱动大表 47_in和exists 48_为排序使用索引OrderBy优化
49_GroupBy优化与慢查询日志 50_批量插入数据脚本 51_用Show Profile进行sql分析
52_全局查询日志 - -
- 四、MySQL锁机制 -
53_数据库锁理论概述 54_读锁案例讲解 55_读锁案例讲解2
56_行锁理论 57_行锁案例讲解 58_行锁演示答疑补充
59_索引失效行锁变表锁 60_间隙锁危害 61_如何锁定一行
62_行锁总结与页锁 - -
- 五、主从复制 -
63_主从复制 - -

一、MySQL架构介绍

01_课程简介

教学视频

  1. MySQL架构介绍
  2. 索引优化分析
  3. 查询截取分析
  4. MySQL锁机制
  5. 主从复制

02_MySQL简介

概述

MySQL是一个关系型数据库管理系统,由瑞典MySQL AB公司开发,目前属于Oracle公司。

MySQL是一种关联数据库管理系统,将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。

MySQL是开源的,所以你不需要支付额外的费用。

MySQL支持大型的数据库。可以处理拥有上千万条记录的大型数据库。MySQL使用标准的SQL数据语言形式。

MySQL可以允许于多个系统上,并且支持多种语言。这些编程语言包括C、C++、Python、Java、Per、PHP、Eifel、Ruby和Tcl等。Mysql对PHP有很好的支持,PHP是目前最流行的Web开发语言。

MySQL支持大型数据库,支持5000万条记录的数据仓库,32位系统表文件最大可支持4GB,64位系统支持最大的表文件为8TB。Mysql是可以定制的,采用了GPL协议,你可以修改源码来开发自己的MySQL系统。

高级MySQL

MySQL内核

SQL优化攻城狮

MySQL服务器的优化

各种参数常量设定

查询语句优化

主从复制

软硬件升级

容灾备份

SQL编程

完整的MySQL优化需要很深的功底,大公司甚至有专门的DBA写上述。

03_RPM安装

MySQL Linux版(CentOS)

官网下载地址

检查当前系统是否安装过MySQL

  • 查询命令:rpm -qa|grep -i mysql
  • 删除命令:rpm -e RPM软件包名(该名字是上一个命令查出来的名字)

没装过:

已装过

安装MySQL服务端(注意提示)

  • 安装命令:rpm -ivh RPM软件包名

安装MySQL客户端

  • 安装命令:rpm -ivh RPM软件包名

查看MySQL安装时创建的MySQL用户和MySQL组

  • cat /etc/passwd |grep mysql
  • cat /etc/group |grep mysql

或者可以执行mysqladmin --version命令。

或者ps -ef | grep mysql

MySQL服务启动与暂停

  • service mysql start
  • service mysql stop
  • ps -ef | grep mysql查看

04_ROOT密码设置和开机自启动

mysql服务启动后,开始连接。

首次连接成功

  • 输入命令mysql
  • 退出命令exit

注意这里,因为MySQL默认没有密码,所以这里我们没有输入密码就直接连上了。

按照安装Server中的提示修改登录密码

  • /usr/bin/mysqladmin -u root password 123456

自启动mysql服务

05_安装位置

在Linux下查看安装目录ps -ef | grep mysql

路径 解释 备注
/var/lib/mysql mysql数据库文件的存放路径 如/var/lib/mysql/atguigu.cloud.pid
/usr/share/mysql 配置文件目录 mysql.server命令及配置文件
/usr/bin 相关命令目录 mysqladmin mysqldump等命令
/etc/init.d/mysql 启停相关脚本

06_修改字符集

修改配置文件

  • cp /usr/share/mysql/my-huge.cnf /etc/my.cnf

为什么mysql会自己读取/etc/my.cnf

打开mysql.server你就会发现conf=/etc/my.cnf居然是写死的。

link

修改字符集和数据存储路径

插入中文,未能正确显示:

查看字符集

  • show variables like 'character%";
  • show variables like ‘%char%";

默认的是客户端和服务器都用了latin1,所以会乱码。

修改

  • vim /etc/my.cnf

红色字为修改项

重启数据库

  • service mysql start
  • service mysql stop

重新连接后重新create databse并使用新建库,然后再重新建表试试

07_MySQL配置文件

主要配置文件

二进制日志log-bin

  • 用于主从复制

错误日志log-error

  • 默认是关闭的,记录严重的警告和错误信息,每次启动和关闭的详细信息等。

查询日志log

  • 默认关闭,记录查询的sql语句,如果开启会减低mysql的整体性能,因为记录日志也是需要消耗系统资源

数据文件

  • 两系统

    • windows
      • 输入mysqlselect @@database;
    • linux
      • 默认路径:/var/lib/mysql
  • frm文件(form)

    • 存放表结构
  • myd文件(my data)

    • 存放表数据
  • myi文件(my index)

    • 存放表索引

如何配置

  • Windows - my.ini文件
  • Linux - /etc/my.cnf文件

08_MySQL逻辑架构简介

总体概览

和其它数据库相比,MySQL有点与众不同,它的架构可以在多种不同场景中应用并发挥良好作用。主要体现在存储引擎的架构上,

插件式的存储引擎架构将查询处理和其它的系统任务以及数据的存储提取相分离。这种架构可以根据业务的需求和实际需要选择合适的存储引擎。

1.连接层

最上层是一些客户端和连接服务,包含本地sock通信和大多数基于客户端/服务端工具实现的类似于tcplip的通信。主要完成一些类似于连接处理、授权认证、及相关的安全方案。在该层上引入了线程池的概念,为通过认证安全接入的客户端提供线程。同样在该层上可以实现基于SSL的安全链接。服务器也会为安全接入的每个客户端验证它所具有的操作权限。

2.服务层

第二层架构主要完成大多少的核心服务功能,如SQL接口,并完成缓存的查询,SQL的分析和优化及部分内置函数的执行。所有跨存储引擎的功能也在这一层实现,如过程、函数等。在该层,服务器会解析查询并创建相应的内部解析树,并对其完成相应的优化如确定查询表的顺序是否利用索引等,最后生成相应的执行操作。如果是select语句,服务器还会查询内部的缓存。如果缓存空间足够大,这样在解决大量读操作的环境中能够很好的提升系统的性能。

3.引擎层

存储引擎层,存储引擎真正的负责了MySQL中数据的存储和提取,服务器通过API与存储引擎进行通信。不同的存储引擎具有的功能不同这样我们可以根据自己的实际需要进行选取,后面介绍MyISAM和InnoDB。

4.存储层
数据存储层,主要是将数据存储在运行于裸设备的文件系统之上,并完成与存储引擎的交互。

09_存储引擎简介

查看命令:

  • 查看mysql以提供什么存储引擎
    • show engines;
mysql> show engines;
+--------------------+---------+----------------------------------------------------------------+--------------+------+------------+
| Engine             | Support | Comment                                                        | Transactions | XA   | Savepoints |
+--------------------+---------+----------------------------------------------------------------+--------------+------+------------+
| InnoDB             | DEFAULT | Supports transactions, row-level locking, and foreign keys     | YES          | YES  | YES        |
| MRG_MYISAM         | YES     | Collection of identical MyISAM tables                          | NO           | NO   | NO         |
| MEMORY             | YES     | Hash based, stored in memory, useful for temporary tables      | NO           | NO   | NO         |
| BLACKHOLE          | YES     | /dev/null storage engine (anything you write to it disappears) | NO           | NO   | NO         |
| MyISAM             | YES     | MyISAM storage engine                                          | NO           | NO   | NO         |
| CSV                | YES     | CSV storage engine                                             | NO           | NO   | NO         |
| ARCHIVE            | YES     | Archive storage engine                                         | NO           | NO   | NO         |
| PERFORMANCE_SCHEMA | YES     | Performance Schema                                             | NO           | NO   | NO         |
| FEDERATED          | NO      | Federated MySQL storage engine                                 | NULL         | NULL | NULL       |
+--------------------+---------+----------------------------------------------------------------+--------------+------+------------+
9 rows in set (0.01 sec)

mysql>
  • 查看mysql当前默认的存储引擎
    • show variables like '%storage_engine%';
mysql> show variables like '%storage_engine%';
+----------------------------------+--------+
| Variable_name                    | Value  |
+----------------------------------+--------+
| default_storage_engine           | InnoDB |
| default_tmp_storage_engine       | InnoDB |
| disabled_storage_engines         |        |
| internal_tmp_disk_storage_engine | InnoDB |
+----------------------------------+--------+
4 rows in set, 1 warning (0.01 sec)

MyISAM和InnoDB

对比项 MyISAM InnoDB
主外键 不支持 支持
事务 不支持 支持
行表锁 表锁,即使操作一条记录也会锁住整个表,不适合高并发的操作 行锁,操作时只锁某一行,不对其他行有影响,适合高并发的操作
缓存 只缓存索引,不缓存真实数据 不仅缓存索引还要缓存真实数据,对内存要求较高,而且内存大小对性能有决定性的影响
表空间
关注点 性能 事务
默认安装

阿里巴巴、淘宝用哪个?

  • Percona为MySQL数据库服务器进行了改进,在功能和性能上较MySQL有着很显著的提升。该版本提升了在高负载情况下的InnoDB的性能、为DBA提供一些非常有用的性能诊断工具;另外有更多的参数和命令来控制服务器行为。

  • 该公司新建了一款存储引擎叫xtradb完全可以替代innodb,并且在性能和并发上做得更好,

  • 阿里巴巴大部分mysql数据库其实使用的percona的原型加以修改。

  • AliSql+AliRedis

二、索引优化分析

10_SQL性能下降原因

1.查询语句写的烂

2.索引失效

  • 单值
select * from user where name='';
create index idx_user_name on user(name);
  • 复合
select * from user where name='' and email='';
create index idx_user_name on user(name, email);

3.关联查询太多join(设计缺陷或不得已的需求)

4.服务器调优及各个参数设置(缓冲、线程数等)

11_SQL执行加载顺序

手写

SELECT DISTINCT
    <select_list>
FROM
    <left_table> <join_type>
JOIN 
    <right_table> 
ON
    <join_condition>
WHERE
    <where_condition>
GROUP BY
    <group_by_list>
HAVING
    <having_condition>
ORDER BY
    <order_by_condition>
LIMIT
    <limit_number>

机读

1 FROM <left_table>
2 ON <join_condition>
3 <join_type> JOIN <right_table>
4 WHERE <where_condition>
5 GROUP BY <group_by_list>
6 HAVING <having_condition>
7 SELECT
8 DISTINCT <select_list>
9 ORDER BY <order_by_condition>
10 LIMIT <limit_number>

总结

12_七种JOIN理论

13_七种JOIN的SQL编写

准备工作,创建以下表,插入新数据:

CREATE TABLE tbl_dept(
	id INT(11) NOT NULL AUTO_INCREMENT,
	deptName VARCHAR(30) DEFAULT NULL,
	locAdd VARCHAR(40) DEFAULT NULL,
	PRIMARY KEY(id)
)ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

CREATE TABLE tbl_emp (
	id INT(11) NOT NULL AUTO_INCREMENT,
	NAME VARCHAR(20) DEFAULT NULL,
	deptId INT(11) DEFAULT NULL,
	PRIMARY KEY (id),
	KEY fk_dept_Id (deptId)
	#CONSTRAINT 'fk_dept_Id' foreign key ('deptId') references 'tbl_dept'('Id')
)ENGINE=INNODB AUTO_INCREMENT=1 DEFAULT CHARSET=utf8;

INSERT INTO tbl_dept(deptName,locAdd) VALUES('RD',11);
INSERT INTO tbl_dept(deptName,locAdd) VALUES('HR',12);
INSERT INTO tbl_dept(deptName,locAdd) VALUES('MK',13);
INSERT INTO tbl_dept(deptName,locAdd) VALUES('MIS',14);
INSERT INTO tbl_dept(deptName,locAdd) VALUES('FD',15);

INSERT INTO tbl_emp(NAME,deptId) VALUES('z3',1);
INSERT INTO tbl_emp(NAME,deptId) VALUES('z4',1);
INSERT INTO tbl_emp(NAME,deptId) VALUES('z5',1);
INSERT INTO tbl_emp(NAME,deptId) VALUES('w5',2);
INSERT INTO tbl_emp(NAME,deptId) VALUES('w6',2);
INSERT INTO tbl_emp(NAME,deptId) VALUES('s7',3);
INSERT INTO tbl_emp(NAME,deptId) VALUES('s8',4);
INSERT INTO tbl_emp(NAME,deptId) VALUES('s9',51);

执行后的结果:

mysql> select * from tbl_dept;
+----+----------+--------+
| id | deptName | locAdd |
+----+----------+--------+
|  1 | RD       | 11     |
|  2 | HR       | 12     |
|  3 | MK       | 13     |
|  4 | MIS      | 14     |
|  5 | FD       | 15     |
+----+----------+--------+
5 rows in set (0.00 sec)

mysql> select * from tbl_emp;
+----+------+--------+
| id | NAME | deptId |
+----+------+--------+
|  1 | z3   |      1 |
|  2 | z4   |      1 |
|  3 | z5   |      1 |
|  4 | w5   |      2 |
|  5 | w6   |      2 |
|  6 | s7   |      3 |
|  7 | s8   |      4 |
|  8 | s9   |     51 |
+----+------+--------+
8 rows in set (0.00 sec)

mysql>

1.inner join

mysql> select * from tbl_emp a inner join tbl_dept b on a.deptId = b.id;
+----+------+--------+----+----------+--------+
| id | NAME | deptId | id | deptName | locAdd |
+----+------+--------+----+----------+--------+
|  1 | z3   |      1 |  1 | RD       | 11     |
|  2 | z4   |      1 |  1 | RD       | 11     |
|  3 | z5   |      1 |  1 | RD       | 11     |
|  4 | w5   |      2 |  2 | HR       | 12     |
|  5 | w6   |      2 |  2 | HR       | 12     |
|  6 | s7   |      3 |  3 | MK       | 13     |
|  7 | s8   |      4 |  4 | MIS      | 14     |
+----+------+--------+----+----------+--------+
7 rows in set (0.00 sec)

2.left join

mysql> select * from tbl_emp a left join tbl_dept b on a.deptId = b.id;
+----+------+--------+------+----------+--------+
| id | NAME | deptId | id   | deptName | locAdd |
+----+------+--------+------+----------+--------+
|  1 | z3   |      1 |    1 | RD       | 11     |
|  2 | z4   |      1 |    1 | RD       | 11     |
|  3 | z5   |      1 |    1 | RD       | 11     |
|  4 | w5   |      2 |    2 | HR       | 12     |
|  5 | w6   |      2 |    2 | HR       | 12     |
|  6 | s7   |      3 |    3 | MK       | 13     |
|  7 | s8   |      4 |    4 | MIS      | 14     |
|  8 | s9   |     51 | NULL | NULL     | NULL   |
+----+------+--------+------+----------+--------+
8 rows in set (0.00 sec)

3.right join

mysql> select * from tbl_emp a right join tbl_dept b on a.deptId = b.id;
+------+------+--------+----+----------+--------+
| id   | NAME | deptId | id | deptName | locAdd |
+------+------+--------+----+----------+--------+
|    1 | z3   |      1 |  1 | RD       | 11     |
|    2 | z4   |      1 |  1 | RD       | 11     |
|    3 | z5   |      1 |  1 | RD       | 11     |
|    4 | w5   |      2 |  2 | HR       | 12     |
|    5 | w6   |      2 |  2 | HR       | 12     |
|    6 | s7   |      3 |  3 | MK       | 13     |
|    7 | s8   |      4 |  4 | MIS      | 14     |
| NULL | NULL |   NULL |  5 | FD       | 15     |
+------+------+--------+----+----------+--------+
8 rows in set (0.00 sec)

4.left join 2

mysql> select * from tbl_emp a left join tbl_dept b on a.deptId = b.id where b.id is null;
+----+------+--------+------+----------+--------+
| id | NAME | deptId | id   | deptName | locAdd |
+----+------+--------+------+----------+--------+
|  8 | s9   |     51 | NULL | NULL     | NULL   |
+----+------+--------+------+----------+--------+
1 row in set (0.00 sec)

5.right join 2

mysql> select * from tbl_emp a right join tbl_dept b on a.deptId = b.id where a.deptid is null;
+------+------+--------+----+----------+--------+
| id   | NAME | deptId | id | deptName | locAdd |
+------+------+--------+----+----------+--------+
| NULL | NULL |   NULL |  5 | FD       | 15     |
+------+------+--------+----+----------+--------+
1 row in set (0.00 sec)

6.full join

MySQL不支持full join,不过可以换种方法表示

mysql> select * from tbl_emp a left join tbl_dept b on a.deptId = b.id
    -> union
    -> select * from tbl_emp a right join tbl_dept b on a.deptId = b.id;
+------+------+--------+------+----------+--------+
| id   | NAME | deptId | id   | deptName | locAdd |
+------+------+--------+------+----------+--------+
|    1 | z3   |      1 |    1 | RD       | 11     |
|    2 | z4   |      1 |    1 | RD       | 11     |
|    3 | z5   |      1 |    1 | RD       | 11     |
|    4 | w5   |      2 |    2 | HR       | 12     |
|    5 | w6   |      2 |    2 | HR       | 12     |
|    6 | s7   |      3 |    3 | MK       | 13     |
|    7 | s8   |      4 |    4 | MIS      | 14     |
|    8 | s9   |     51 | NULL | NULL     | NULL   |
| NULL | NULL |   NULL |    5 | FD       | 15     |
+------+------+--------+------+----------+--------+
9 rows in set (0.00 sec)

7.full join 2

mysql> select * from tbl_emp a left join tbl_dept b on a.deptId = b.id where b.id is null union select * from tbl_emp a right join tbl_dept b on a.deptId = b.id where a.deptId is null;
+------+------+--------+------+----------+--------+
| id   | NAME | deptId | id   | deptName | locAdd |
+------+------+--------+------+----------+--------+
|    8 | s9   |     51 | NULL | NULL     | NULL   |
| NULL | NULL |   NULL |    5 | FD       | 15     |
+------+------+--------+------+----------+--------+
2 rows in set (0.00 sec)

14_索引是什么

MySQL官方对索引的定义为:索引(Index)是帮助MySQL高效获取数据的数据结构。可以得到索引的本质:索引是数据结构。

索引的目的在于提高查询效率,可以类比字典。

如果要查“mysql”这个单词,我们肯定需要定位到m字母,然后从下往下找到y字母,再找到剩下的sql。

如果没有索引,那么你可能需要逐个逐个寻找,如果我想找到Java开头的单词呢?或者Oracle开头的单词呢?

是不是觉得如果没有索引,这个事情根本无法完成?

你可以简单理解为“排好序的快速查找数据结构”。

详解

在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。下图就是一种可能的索引方式示例:

左边是数据表,一共有两列七条记录,最左边的是数据记录的物理地址。

为了加快Col2的查找,可以维护一个右边所示的二叉查找树,每个节点分别包含索引键值和一个指向对应数据记录物理地址的指针,这样就可以运用二叉查找在一定的复杂度内获取到相应数据,从而快速的检索出符合条件的记录。

数据本身之外,数据库还维护着一个满足特定查找算法的数据结构,这些数据结构以某种方式指向数据,这样就可以在这些数据结构的基础上实现高级查找算法,这种数据结构就是索引。

一般来说索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。

我们平常所说的索引,如果没有特别指明,都是指B树(多路搜索树,并不一定是二叉的)结构组织的索引。其中聚集索引,次要索引,覆盖索引,复合索引,前缀索引,唯一索引默认都是使用B+树索引,统称索引。当然,除了B+树这种类型的索引之外,还有哈稀索引(hash index)等。

15_索引优劣势

优势

类似大学图书馆建书目索引,提高数据检索的效率,降低数据库的IO成本。

通过索引列对数据进行排序,降低数据排序的成本,降低了CPU的消耗。

劣势

实际上索引也是一张表,该表保存了主键与索引字段,并指向实体表的记录,所以索引列也是要占用空间的(占空间)

虽然索引大大提高了查询速度,同时却会降低更新表的速度,如对表进行INSERT、UPDATE和DELETE。因为更新表时,MySQL不仅要保存数据,还要保存一下索引文件每次更新添加了索引列的字段,都会调整因为更新所带来的键值变化后的索引信息。()

索引只是提高效率的一个因素,如果你的MysQL有大数据量的表,就需要花时间研究建立最优秀的索引,或优化查询。

总结

索引,空间换取时间。

16_索引分类和建索引命令语句

MySQL索引分类:

  • 单值索引:即一个索引只包含单个列,一个表可以有多个单列索引。
  • 唯一索引:索引列的值必须唯一,但允许有空值。
  • 复合索引:即一个索引包含多个列。
  • 基本语法:
    • 创建
      • CREATE [UNIQUE] INDEX indexName ON mytable(columnName(length));
      • ALTER mytable ADD [UNIQUE] INDEX [indexName] ON (columnName(length));
    • 删除
      • DROP INDEX [indexName] ON mytable;
    • 查看
      • SHOW INDEX FROM tableName;
    • 使用alter命令 - 有四种方式来添加数据表的索引
      • ALTER TABLE tbl_name ADD PRIMARY KEY (column_list);:该语句添加一个主键,这意味着索引值必须是唯一的,且不能为NULL。
      • ALTER TABLE tbl name ADD UNIQUE index_name (column_list);:这条语句创建索引的值必须是唯一的(除了NULL外,NULL可能会出现多次)。
      • ALTER TABLE tbl_name ADD INDEX index_name (column_list);:添加普通索引,索引值可出现多次。
      • ALTER TABLE tbl_name ADD FULLTEXT index_name (column_list);:该语句指定了索引为FULLTEXT,用于全文索引。

17_索引结构与检索原理

MySQL索引结构

  • BTree索引
  • Hash索引
  • full-text全文索引
  • R-Tree索引

BTree索引检索原理

初始化介绍

一颗b+树,浅蓝色的块我们称之为一个磁盘块,可以看到每个磁盘块包含几个数据项(深蓝色所示)和指针(黄色所示),如磁盘块1包含数据项17和35,包含指针P1、P2、P3,
P1表示小于17的磁盘块,P2表示在17和35之间的磁盘块,P3表示大于35的磁盘块。

真实的数据存在于叶子节点即3、5、9、10、13、15、28、29、36、60、75、79、90、99。

非叶子节点只不存储真实的数据,只存储指引搜索方向的数据项,如17、35并不真实存在于数据表中。

查找过程

如果要查找数据项29,那么首先会把磁盘块1由磁盘加载到内存,此时发生一次IO。在内存中用二分查找确定29在17和35之间,锁定磁盘块1的P2指针,内存时间因为非常短(相比磁盘的IO)可以忽略不计,通过磁盘块1的P2指针的磁盘地址把磁盘块3由磁盘加载到内存,发生第二次IO,29在26和30之间,锁定磁盘块3的P2指针,通过指针加载磁盘块8到内存,发生第三次IO,同时内存中做二分查找找到29,结束查询,总计三次IO。

真实的情况是,3层的b+树可以表示上百万的数据,如果上百万的数据查找只需要三次IO,性能提高将是巨大的,如果没有索引,每个数据项都要发生一次IO,那么总共需要百万次的IO,显然成本非常非常高。

18_哪些情况适合建索引

  1. 主键自动建立唯一索引
  2. 频繁作为查询条件的字段应该创建索引
  3. 查询中与其它表关联的字段,外键关系建立索引
  4. 频繁更新的字段不适合创建索引,因为每次更新不单单是更新了记录还会更新索引
  5. Where条件里用不到的字段不创建索引
  6. 单键/组合索引的选择问题,who?(在高并发下倾向创建组合索引)
  7. 查询中排序的字段,排序字段若通过索引去访问将大大提高排序速度
  8. 查询中统计或者分组字段

19_哪些情况不适合建索引

  1. 表记录太少
  2. 经常增删改的表
  3. 数据重复且分布平均的表字段,因此应该只为最经常查询和最经常排序的数据列建立索引。注意,如果某个数据列包含许多重复的内容,为它建立索引就没有太大的实际效果。

假如一个表有10万行记录,有一个字段A只有T和F两种值,且每个值的分布概率天约为50%,那么对这种表A字段建索引一般不会提高数据库的查询速度

索引的选择性是指索引列中不同值的数目与表中记录数的比。如果一个表中有2000条记录,表索引列有1980个不同的值,那么这个索引的选择性就是1980/2000=0.99。一个索引的选择性越接近于1,这个索引的效率就越高。

20_性能分析前提知识

MySQL Query Optimizer

Mysql中有专门负责优化SELECT语句的优化器模块,主要功能:通过计算分析系统中收集到的统计信息,为客户端请求的Query提供他认为最优的执行计划(他认为最优的数据检索方式,但不见得是DBA认为是最优的,这部分最耗费时间)

当客户端向MySQL请求一条Query,命令解析器模块完成请求分类,区别出是SELECT并转发给MySQL Query Optimizer时,MySQL Query Optimizer首先会对整条Query进行优化,处理掉一些常量表达式的预算直接换算成常量值。并对Query中的查询条件进行简化和转换,如去掉一些无用或显而易见的条件、结构调整等。然后分析Query 中的 Hint信息(如果有),看显示Hint信息是否可以完全确定该Query的执行计划。如果没有Hint 或Hint信息还不足以完全确定执行计划,则会读取所涉及对象的统计信息,根据Query进行写相应的计算分析,然后再得出最后的执行计划。

MySQL常见瓶颈

  • CPU:CPU在饱和的时候一般发生在数据装入内存或从磁盘上读取数据时候
  • IO:磁盘I/O瓶颈发生在装入数据远大于内存容量的时候
  • 服务器硬件的性能瓶颈:top,free,iostat和vmstat来查看系统的性能状态

21_explain使用简介

使用EXPLAIN关键字可以模拟优化器执行SQL查询语句,从而知道MySQL是如何处理你的SQL语句的。分析你的查询语句或是表结构的性能瓶颈。

官网地址

能干嘛

  • 表的读取顺序
  • 数据读取操作的操作类型
  • 哪些索引可以使用
  • 哪些索引被实际使用
  • 表之间的引用
  • 每张表有多少行被优化器查询

怎么玩

  • explain + sql语句
  • 执行计划包含的信息
    • | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
mysql> select * from tbl_dept;
+----+----------+--------+
| id | deptName | locAdd |
+----+----------+--------+
|  1 | RD       | 11     |
|  2 | HR       | 12     |
|  3 | MK       | 13     |
|  4 | MIS      | 14     |
|  5 | FD       | 15     |
+----+----------+--------+
5 rows in set (0.00 sec)

mysql> explain select * from tbl_dept;
+----+-------------+----------+------------+------+---------------+------+---------+------+------+----------+-------+
| id | select_type | table    | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra |
+----+-------------+----------+------------+------+---------------+------+---------+------+------+----------+-------+
|  1 | SIMPLE      | tbl_dept | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    5 |   100.00 | NULL  |
+----+-------------+----------+------------+------+---------------+------+---------+------+------+----------+-------+
1 row in set, 1 warning (0.00 sec)

22_explain之id介绍

select查询的序列号,包含一组数字,表示查询中执行select子句或操作表的顺序

三种情况:

  • id相同,执行顺序由上至下

  • id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行

  • id相同不同,同时存在

id相同,执行顺序由上至下

id不同,如果是子查询,id的序号会递增,id值越大优先级越高,越先被执行

id相同不同,同时存在

id如果相同,可以认为是一组,从上往下顺序执行;在所有组中,id值越大,优先级越高,越先执行,衍生=DERIVED

小结

id越大越先查询

23_explain之select_type和table介绍

select_type:查询的类型,主要是用于区别普通查询、联合查询、子查询等的复杂查询。

select_type有哪些?

  1. SIMPLE - 简单的select查询,查询中不包含子查询或者UNION。
  2. PRIMARY - 查询中若包含任何复杂的子部分,最外层查询则被标记为。
  3. SUBQUERY - 在SELECT或WHERE列表中包含了子查询。
  4. DERIUED - 在FROM列表中包含的子查询被标记为DERIVED(衍生)MySQL会递归执行这些子查询,把结果放在临时表里。
  5. UNION - 若第二个SELECT出现在UNION之后,则被标记为UNION;若UNION包含在FROM子句的子查询中外层SELECT将被标记为:DERIVED。
  6. UNION RESULT - 从UNION表获取结果的SELECT。

table:显示这一行的数据是关于哪张表的。

24_explain之type介绍

访问类型排列

type显示的是访问类型,是较为重要的一个指标,结果值从最好到最坏依次是:

system > const > eq_ref > ref > fulltext > ref_or_null > index_merge > unique_subquery > index_subquery > range > index >ALL

system>const>eq_ref>ref>range>index>ALL

一般来说,得保证查询至少达到range级别,最好能达到ref。

详细说明

system:表只有一行记录(等于系统表),这是const类型的特列,平时不会出现,这个也可以忽略不计。

const:表示通过索引一次就找到了,const用于比较primary key或者unique索引。因为只匹配一行数据,所以很快如将主键置于where列表中,MySQL就能将该查询转换为一个常量。

eq_ref:唯一性索引扫描,对于每个索引键,表中只有一条记录与之匹配。常见于主键或唯一索引扫描。选择本地图片

ref:非唯一性索引扫描,返回匹配某个单独值的所有行,本质上也是一种索引访问,它返回所有匹配某个单独值的行,然而,它可能会找到多个符合条件的行,所以他应该属于查找和扫描的混合体。

range:只检索给定范围的行,使用一个索引来选择行。key列显示使用了哪个索引一般就是在你的where语句中出现了between、<、>、in等的查询。这种范围扫描索引扫描比全表扫描要好,因为它只需要开始于索引的某一点,而结束语另一点,不用扫描全部索引。

index:Full Index Scan,index与ALL区别为index类型只遍历索引树。这通常比ALL快,因为索引文件通常比数据文件小(也就是说虽然all和Index都是读全表,但index是从索引中读取的,而all是从硬盘中读的)。

all:Full Table Scan,将遍历全表以找到匹配的行。

备注:一般来说,得保证查询至少达到range级别,最好能达到ref。

25_explain之possible_keys和key介绍

possible_keys

显示可能应用在这张表中的索引,一个或多个。查询涉及到的字段火若存在索引,则该索引将被列出,但不一定被查询实际使用

key

实际使用的索引。如果为NULL,则没有使用索引

查询中若使用了覆盖索引,则该索引仅出现在key列表中

26_explain之key_len介绍

表示索引中使用的字节数,可通过该列计算查询中使用的索引的长度。在不损失精确性的情况下,长度越短越好

key_len显示的值为索引字段的最大可能长度,并非实际使用长度,即key_len是根据表定义计算而得,不是通过表内检索出的

27_explain之ref介绍

显示索引的哪一列被使用了,如果可能的话,是一个常数。哪些列或常量被用于查找索引列上的值。

由key_len可知t1表的idx_col1_col2被充分使用,col1匹配t2表的col1,col2匹配了一个常量,即 ‘ac’。

查询中与其它表关联的字段,外键关系建立索引。

28_explain之rows介绍

根据表统计信息及索引选用情况,大致估算出找到所需的记录所需要读取的行数。

29_explain之Extra介绍

包含不适合在其他列中显示但十分重要的额外信息。

Using filesort

说明mysql会对数据使用一个外部的索引排序,而不是按照表内的索引顺序进行读取。MySQL中无法利用索引完成的排序操作称为"文件排序"

Using temporary

使了用临时表保存中间结果,MysQL在对查询结果排序时使用临时表。常见于排序order by和分组查询group by。

Using index

表示相应的select操作中使用了覆盖索引(Covering Index),避免访问了表的数据行,效率不错!

如果同时出现using where,表明索引被用来执行索引键值的查找;

如果没有同时出现using where,表明索引用来读取数据而非执行查找动作。

如果同时出现using where,表明索引被用来执行索引键值的查找;

如果没有同时出现using where,表明索引用来读取数据而非执行查找动作。

覆盖索引(Covering Index),一说为索引覆盖。

理解方式一:就是select的数据列只用从索引中就能够取得,不必读取数据行,MySQL可以利用索引返回select列表中的字段,而不必根据索引再次读取数据文件,换句话说查询列要被所建的索引覆盖

理解方式二:索引是高效找到行的一个方法,但是一般数据库也能使用索引找到一个列的数据,因此它不必读取整个行。毕竟索引叶子节点存储了它们索引的数据;当能通过读取索引就可以得到想要的数据,那就不需要读取行了。一个索引包含了(或覆盖了)满足查询结果的数据就叫做覆盖索引。

注意:

如果要使用覆盖索引,一定要注意select列表中只取出需要的列,不可select*,因为

如果将所有字段一起做索引会导致索引文件过大,查询性能下降。

What is a Covering Index?

A covering index is an index that contains all of, and possibly more, the columns you need for your query.

For instance, this:

SELECT *
FROM tablename
WHERE criteria

will typically use indexes to speed up the resolution of which rows to retrieve using criteria, but then it will go to the full table to retrieve the rows.

However, if the index contained the columns column1, column2 and column3, then this sql:

SELECT column1, column2
FROM tablename
WHERE criteria

and, provided that particular index could be used to speed up the resolution of which rows to retrieve, the index already contains the values of the columns you’re interested in, so it won’t have to go to the table to retrieve the rows, but can produce the results directly from the index.

This can also be used if you see that a typical query uses 1-2 columns to resolve which rows, and then typically adds another 1-2 columns, it could be beneficial to append those extra columns (if they’re the same all over) to the index, so that the query processor can get everything from the index itself.

link

Using where

表明使用了where过滤。

Using join buffer

使用了连接缓存。

impossible where

where子句的值总是false,不能用来获取任何元组。

select tables optimized away

在没有GROUPBY子句的情况下,基于索引优化MIN/MAX操作,或者对于MyISAM存储引擎优化COUNT(*)操作,不必等到执行阶段再进行计算,查询执行计划生成的阶段即完成优化。

distinct

优化distinct操作,在找到第一匹配的元组后即停止找同样值的动作。

30_explain之热身Case

第一行(执行顺序4):id列为1,表示是union里的第一个select,select_type列的primary表示该查询为外层查询,table列被标记为,表示查询结果来自一个衍生表,其中derived3中3代表该查询衍生自第三个select查询,即id为3的select。【select d1.name… 】

第二行(执行顺序2):id为3,是整个查询中第三个select的一部分。因查询包含在from中,所以为derived。【select id,namefrom t1 where other_column=’’】

第三行(执行顺序3):select列表中的子查询select_type为subquery,为整个查询中的第二个select。【select id from t3】

第四行(执行顺序1):select_type为union,说明第四个select是union里的第二个select,最先执行【select name,id from t2】

第五行(执行顺序5):代表从union的临时表中读取行的阶段,table列的<union1,4>表示用第一个和第四个select的结果进行union操作。【两个结果union操作】

31_索引单表优化案例

建表SQL

CREATE TABLE IF NOT EXISTS article(
	id INT(10) UNSIGNED NOT NULL PRIMARY KEY AUTO_INCREMENT,
	author_id INT(10) UNSIGNED NOT NULL,
	category_id INT(10) UNSIGNED NOT NULL,
	views INT(10) UNSIGNED NOT NULL,
	comments INT(10) UNSIGNED NOT NULL,
	title VARCHAR(255) NOT NULL,
	content TEXT NOT NULL
);

INSERT INTO article(author_id,category_id,views,comments,title,content)
VALUES
(1,1,1,1,'1','1'),
(2,2,2,2,'2','2'),
(1,1,3,3,'3','3');

mysql> select * from article;
+----+-----------+-------------+-------+----------+-------+---------+
| id | author_id | category_id | views | comments | title | content |
+----+-----------+-------------+-------+----------+-------+---------+
|  1 |         1 |           1 |     1 |        1 | 1     | 1       |
|  2 |         2 |           2 |     2 |        2 | 2     | 2       |
|  3 |         1 |           1 |     3 |        3 | 3     | 3       |
+----+-----------+-------------+-------+----------+-------+---------+
3 rows in set (0.00 sec)

案例

查询category_id为1且comments 大于1的情况下,views最多的article_id。

mysql> SELECT id, author_id FROM article WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1;
+----+-----------+
| id | author_id |
+----+-----------+
|  3 |         1 |
+----+-----------+
1 row in set (0.00 sec)
mysql> show index from article;
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table   | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| article |          0 | PRIMARY  |            1 | id          | A         |           3 |     NULL | NULL   |      | BTREE      |         |               |
+---------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
1 row in set (0.00 sec)
mysql> explain SELECT id, author_id FROM article WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1;
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------------------+
| id | select_type | table   | partitions | type | possible_keys | key  | key_len | ref  | rows | filtered | Extra                       |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------------------+
|  1 | SIMPLE      | article | NULL       | ALL  | NULL          | NULL | NULL    | NULL |    3 |    33.33 | Using where; Using filesort |
+----+-------------+---------+------------+------+---------------+------+---------+------+------+----------+-----------------------------+
1 row in set, 1 warning (0.00 sec)

结论:很显然,type是ALL,即最坏的情况。Extra里还出现了Using filesort,也是最坏的情况。优化是必须的。

开始优化

新建索引+删除索引

mysql> create index idx_article_ccv on article(category_id,comments,views);
Query OK, 0 rows affected (0.03 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> show index from article;
+---------+------------+-----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| Table   | Non_unique | Key_name        | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |
+---------+------------+-----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
| article |          0 | PRIMARY         |            1 | id          | A         |           3 |     NULL | NULL   |      | BTREE      |         |               |
| article |          1 | idx_article_ccv |            1 | category_id | A         |           2 |     NULL | NULL   |      | BTREE      |         |               |
| article |          1 | idx_article_ccv |            2 | comments    | A         |           3 |     NULL | NULL   |      | BTREE      |         |               |
| article |          1 | idx_article_ccv |            3 | views       | A         |           3 |     NULL | NULL   |      | BTREE      |         |               |
+---------+------------+-----------------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+
4 rows in set (0.00 sec)

或者用下面sql创建索引:

ALTER TABLE 'article' ADD INDEX idx_article_ccv ( 'category_id , 'comments', 'views' );

创建后的效果

mysql> explain SELECT id, author_id FROM article WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1;
+----+-------------+---------+------------+-------+-----------------+-----------------+---------+------+------+----------+---------------------------------------+
| id | select_type | table   | partitions | type  | possible_keys   | key             | key_len | ref  | rows | filtered | Extra                                 |
+----+-------------+---------+------------+-------+-----------------+-----------------+---------+------+------+----------+---------------------------------------+
|  1 | SIMPLE      | article | NULL       | range | idx_article_ccv | idx_article_ccv | 8       | NULL |    1 |   100.00 | Using index condition; Using filesort |
+----+-------------+---------+------------+-------+-----------------+-----------------+---------+------+------+----------+---------------------------------------+
1 row in set, 1 warning (0.00 sec)

Extra里还是出现了Using filesort,创建这索引作用不大。

如果comments > 1换成comments = 1,可以让Using filesort消失,但不符题目要求。

mysql> explain SELECT id, author_id FROM article WHERE category_id = 1 AND comments = 1 ORDER BY views DESC LIMIT 1;
+----+-------------+---------+------------+------+-----------------+-----------------+---------+-------------+------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys   | key             | key_len | ref         | rows | filtered | Extra       |
+----+-------------+---------+------------+------+-----------------+-----------------+---------+-------------+------+----------+-------------+
|  1 | SIMPLE      | article | NULL       | ref  | idx_article_ccv | idx_article_ccv | 8       | const,const |    1 |   100.00 | Using where |
+----+-------------+---------+------------+------+-----------------+-----------------+---------+-------------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

既然创建这索引作用不大,删了它吧。

mysql> DROP INDEX idx_article_ccv ON article;
Query OK, 0 rows affected (0.01 sec)
Records: 0  Duplicates: 0  Warnings: 0

缘由

type变成了range,这是可以忍受的。但是extra里使用Using filesort仍是无法接受的。

但是我们已经建立了索引,为啥没用呢?

这是因为按照BTree索引的工作原理,先排序category_id,如果遇到相同的category_id则再排序comments,如果遇到相同的comments 则再排序views。

当comments字段在联合索引里处于中间位置时,因comments > 1条件是一个范围值(所谓range),MySQL无法利用索引再对后面的views部分进行检索,即range类型查询字段后面的索引无效。

改进

跟上次创建索引相比,这次不为comments字段创建索引。

mysql> create index idx_article_cv on article(category_id, views);
Query OK, 0 rows affected (0.01 sec)
Records: 0  Duplicates: 0  Warnings: 0

再次explain

mysql> explain SELECT id, author_id FROM article WHERE category_id = 1 AND comments > 1 ORDER BY views DESC LIMIT 1;
+----+-------------+---------+------------+------+----------------+----------------+---------+-------+------+----------+-------------+
| id | select_type | table   | partitions | type | possible_keys  | key            | key_len | ref   | rows | filtered | Extra       |
+----+-------------+---------+------------+------+----------------+----------------+---------+-------+------+----------+-------------+
|  1 | SIMPLE      | article | NULL       | ref  | idx_article_cv | idx_article_cv | 4       | const |    2 |    33.33 | Using where |
+----+-------------+---------+------------+------+----------------+----------------+---------+-------+------+----------+-------------+
1 row in set, 1 warning (0.00 sec)

可以看到,type变为了ref,Extra中的Using filesort也消失了,结果非常理想。

32_索引两表优化案例

新建SQL

CREATE TABLE IF NOT EXISTS class(
	id INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
	card INT(10) UNSIGNED NOT NULL,
	PRIMARY KEY(id)
);

CREATE TABLE IF NOT EXISTS book(
	bookid INT(10) UNSIGNED NOT NULL AUTO_INCREMENT,
	card INT(10) UNSIGNED NOT NULL,
	PRIMARY KEY(bookid)
);

INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO class(card) VALUES(FLOOR(1+(RAND()*20)));

INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND()*20)));
INSERT INTO book(card) VALUES(FLOOR(1+(RAND
;