Bootstrap

Java基础篇:Executor框架


概述

Executor 框架是 Java5 之后引进的,在 Java 5 之后,通过 Executor 来启动线程比使用 Thread 的 start 方法更好,除了更易管理,效率更好(用线程池实现,节约开销)外,还有关键的一点:有助于避免 this 逃逸问题。

this 逃逸是指在构造函数返回之前其他线程就持有该对象的引用。调用尚未构造完全的对象的方法可能引发令人疑惑的错误。

在 HotSpot VM 的线程模型中,Java线程(java.lang.Thread)被一对一映射为本地操作系统线程。Java线程启动时会创建一个本地操作系统线程;当该Java线程终止时,这个操作系统线程也被回收。操作系统会调度所有线程并将它们分配给可用的CPU。

在上层,Java多线程程序通常把应用分解为若干个任务,然后使用用户级的调度器(Executor框架)将这些任务映射为固定的数量的线程;在底层,操作系统内核将这些线程映射到硬件处理器上。这两级的调度模型的示意图如下所示:
在这里插入图片描述

从上图可以看出,应用程序通过 Executor 框架控制上层的调度;而下层的调度由操作系统内核控制,下层的调度不受应用程序的控制。

Executor 框架不仅包括了线程池的管理,还提供了线程工厂、队列以及拒绝策略等,Executor 框架让并发编程变得更加简单。

##使用线程池的好处

  • 线程池的好处是减少在创建和销毁线程上所消耗的时间以及系统资源的开销,解决资源不足的问题。
  • 如果不使用线程池,有可能造成系统创建大量同类线程而导致消耗完内存或者“过度切换”的问题。
  • 池化技术的思想主要是为了减少每次获取资源的消耗,提高对资源的利用率。

Executor框架结构

  1. 任务(Runnable/ Callable)

执行任务需要实现的 Runnable接口 或 Callable接口。Runnable 接口或 Callable 接口 实现类都可以被 ThreadPoolExecutor 或 ScheduledThreadPoolExecutor 执行。

  1. 任务的执行(Executor)

    在这里插入图片描述

如上图(任务的执行相关接口)所示,包括任务执行机制的核心接口 Executor ,以及继承自 Executor 接口的 ExecutorService 接口。ThreadPoolExecutor 和 ScheduledThreadPoolExecutor 这两个关键类实现了 ExecutorService 接口。

ThreadPoolExecutor 类描述:

//AbstractExecutorService实现了ExecutorService接口
public class ThreadPoolExecutor extends AbstractExecutorService

ScheduledThreadPoolExecutor 类描述:

//ScheduledExecutorService实现了ExecutorService接口
public class ScheduledThreadPoolExecutor
        extends ThreadPoolExecutor
        implements ScheduledExecutorService
  1. 异步计算的结果(Future)

    Future 接口以及 Future 接口的实现类 FutureTask 类都可以代表异步计算的结果。

    当我们把 Runnable接口 或 Callable 接口 的实现类提交给 ThreadPoolExecutor 或 ScheduledThreadPoolExecutor 执行。(调用 submit() 方法时会返回一个 FutureTask 对象)

Executor框架的使用示意图

在这里插入图片描述

  1. 主线程首先要创建实现 Runnable 或者 Callable 接口的任务对象
  2. 把创建完成的实现 Runnable/Callable接口的 对象直接交给 ExecutorService 执行: ExecutorService.execute(Runnable command))或者也可以把 Runnable 对象或Callable 对象提交给 ExecutorService 执行(ExecutorService.submit(Runnable task)ExecutorService.submit(Callable task)
  3. 如果执行 ExecutorService.submit(…)ExecutorService 将返回一个实现Future接口的对象(刚才提到过了执行 execute()方法和 submit()方法的区别,submit()会返回一个 FutureTask 对象)。由于 FutureTask 实现了 Runnable,我们也可以创建 FutureTask,然后直接交给 ExecutorService 执行
  4. 最后,主线程可以执行 FutureTask.get()方法来等待任务执行完成。主线程也可以执行 FutureTask.cancel(boolean mayInterruptIfRunning)来取消此任务的执行。

ThreadPoolExecutor类介绍

线程池实现类 ThreadPoolExecutorExecutor 框架最核心的类。

ThreadPoolExecutor 类分析

ThreadPoolExecutor 类中提供的四个构造方法。来看最长的那个,其余三个都是在这个构造方法的基础上产生(其他几个构造方法说白点都是给定某些默认参数的构造方法比如默认制定拒绝策略是什么)

/**
     * 用给定的初始参数创建一个新的ThreadPoolExecutor。
     */
    public ThreadPoolExecutor(int corePoolSize,//线程池的核心线程数量
                              int maximumPoolSize,//线程池的最大线程数
                              long keepAliveTime,//当线程数大于核心线程数时,多余的空闲线程存活的最长时间
                              TimeUnit unit,//时间单位
                              BlockingQueue<Runnable> workQueue,//任务队列,用来储存等待执行任务的队列
                              ThreadFactory threadFactory,//线程工厂,用来创建线程,一般默认即可
                              RejectedExecutionHandler handler//拒绝策略,当提交的任务过多而不能及时处理时,我们可以定制策略来处理任务
                               ) {
        if (corePoolSize < 0 ||
            maximumPoolSize <= 0 ||
            maximumPoolSize < corePoolSize ||
            keepAliveTime < 0)
            thrownew IllegalArgumentException();
        if (workQueue == null || threadFactory == null || handler == null)
            thrownew NullPointerException();
        this.corePoolSize = corePoolSize;
        this.maximumPoolSize = maximumPoolSize;
        this.workQueue = workQueue;
        this.keepAliveTime = unit.toNanos(keepAliveTime);
        this.threadFactory = threadFactory;
        this.handler = handler;
    }

ThreadPoolExecutor 3 个最重要的参数:

  • corePoolSize : 核心线程数线程数定义了最小可以同时运行的线程数量。
  • maximumPoolSize : 当队列中存放的任务达到队列容量的时候,当前可以同时运行的线程数量变为最大线程数。
  • workQueue: 当新任务来的时候会先判断当前运行的线程数量是否达到核心线程数,如果达到的话,信任就会被存放在队列中。

ThreadPoolExecutor其他常见参数:

  1. keepAliveTime:当线程池中的线程数量大于 corePoolSize 的时候,如果这时没有新的任务提交,核心线程外的线程不会立即销毁,而是会等待,直到等待的时间超过了 keepAliveTime才会被回收销毁;
  2. unit : keepAliveTime 参数的时间单位。
  3. threadFactory :executor 创建新线程的时候会用到。
  4. handler :饱和策略。关于饱和策略下面单独介绍一下。

下面可以加深对线程池中各个参数的相互关系的理解

在这里插入图片描述

ThreadPoolExecutor 饱和策略定义:

如果当前同时运行的线程数量达到最大线程数量并且队列也已经被放满了任时,ThreadPoolTaskExecutor 定义一些策略:

  • ThreadPoolExecutor.AbortPolicy:抛出 RejectedExecutionException来拒绝新任务的处理。
  • ThreadPoolExecutor.CallerRunsPolicy:调用执行自己的线程运行任务。您不会任务请求。但是这种策略会降低对于新任务提交速度,影响程序的整体性能。另外,这个策略喜欢增加队列容量。如果您的应用程序可以承受此延迟并且你不能任务丢弃任何一个任务请求的话,你可以选择这个策略。
  • ThreadPoolExecutor.DiscardPolicy 不处理新任务,直接丢弃掉。
  • ThreadPoolExecutor.DiscardOldestPolicy 此策略将丢弃最早的未处理的任务请求。

Spring 通过 ThreadPoolTaskExecutor 或者我们直接通过 ThreadPoolExecutor 的构造函数创建线程池的时候,当我们不指定 RejectedExecutionHandler 饱和策略的话来配置线程池的时候默认使用的是 ThreadPoolExecutor.AbortPolicy。在默认情况下,ThreadPoolExecutor 将抛出 RejectedExecutionException 来拒绝新来的任务 ,这代表你将丢失对这个任务的处理。对于可伸缩的应用程序,建议使用 ThreadPoolExecutor.CallerRunsPolicy。当最大池被填满时,此策略为我们提供可伸缩队列。

推荐使用 ThreadPoolExecutor 构造函数创建线程池

《阿里巴巴 Java 开发手册》中强制线程池不允许使用 Executors 去创建,而是通过 ThreadPoolExecutor 构造函数的方式,这样的处理方式让写的同学更加明确线程池的运行规则,规避资源耗尽的风险

Executors 返回线程池对象的弊端如下:

  • FixedThreadPoolSingleThreadExecutor :允许请求的队列长度为 Integer.MAX_VALUE,可能堆积大量的请求,从而导致 OOM。
  • CachedThreadPool 和 ScheduledThreadPool :允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM。

方式一:通过ThreadPoolExecutor构造函数实现(推荐使用)

在这里插入图片描述

方式二:通过 Executor 框架的工具类 Executors 来实现我们可以创建三种类型的 ThreadPoolExecutor:

  • FixedThreadPool
  • SingleThreadExecutor
  • CachedThreadPool

ThreadPoolExecutor使用示例

示例代码1:Runnable+ThreadPoolExecutor

首先创建一个 Runnable 接口的实现类(当然也可以是 Callable 接口)

import java.util.Date;

/**
 * 这是一个简单的Runnable类,需要大约5秒钟来执行其任务。
 */
public class MyRunnable implements Runnable {

    private String command;

    public MyRunnable(String s) {
        this.command = s;
    }

    @Override
    public void run() {
        System.out.println(Thread.currentThread().getName() + " Start. Time = " + new Date());
        processCommand();
        System.out.println(Thread.currentThread().getName() + " End. Time = " + new Date());
    }

    private void processCommand() {
        try {
            Thread.sleep(5000);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
    }

    @Override
    public String toString() {
        returnthis.command;
    }
}

使用 ThreadPoolExecutor 构造函数自定义参数的方式来创建线程池

import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

publicclass ThreadPoolExecutorDemo {

    privatestaticfinalint CORE_POOL_SIZE = 5;
    privatestaticfinalint MAX_POOL_SIZE = 10;
    privatestaticfinalint QUEUE_CAPACITY = 100;
    privatestaticfinal Long KEEP_ALIVE_TIME = 1L;
    public static void main(String[] args) {

        //使用阿里巴巴推荐的创建线程池的方式
        //通过ThreadPoolExecutor构造函数自定义参数创建
        ThreadPoolExecutor executor = new ThreadPoolExecutor(
                CORE_POOL_SIZE,
                MAX_POOL_SIZE,
                KEEP_ALIVE_TIME,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(QUEUE_CAPACITY),
                new ThreadPoolExecutor.CallerRunsPolicy());

        for (int i = 0; i < 10; i++) {
            //创建WorkerThread对象(WorkerThread类实现了Runnable 接口)
            Runnable worker = new MyRunnable("" + i);
            //执行Runnable
            executor.execute(worker);
        }
        //终止线程池
        executor.shutdown();
        while (!executor.isTerminated()) {
        }
        System.out.println("Finished all threads");
    }
}

pool-1-thread-1 Start. Time = Wed May 06 23:20:09 CST 2020
pool-1-thread-4 Start. Time = Wed May 06 23:20:09 CST 2020
pool-1-thread-2 Start. Time = Wed May 06 23:20:09 CST 2020
pool-1-thread-5 Start. Time = Wed May 06 23:20:09 CST 2020
pool-1-thread-3 Start. Time = Wed May 06 23:20:09 CST 2020
pool-1-thread-4 End. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-1 End. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-3 End. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-5 End. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-2 End. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-5 Start. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-2 Start. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-3 Start. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-1 Start. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-4 Start. Time = Wed May 06 23:20:14 CST 2020
pool-1-thread-5 End. Time = Wed May 06 23:20:19 CST 2020
pool-1-thread-2 End. Time = Wed May 06 23:20:19 CST 2020
pool-1-thread-1 End. Time = Wed May 06 23:20:19 CST 2020
pool-1-thread-4 End. Time = Wed May 06 23:20:19 CST 2020
pool-1-thread-3 End. Time = Wed May 06 23:20:19 CST 2020

在以上代码中,指定了线程池的相关参数:

  1. corePoolSize: 核心线程数为 5。
  2. maximumPoolSize :最大线程数 10
  3. keepAliveTime : 等待时间为 1L。
  4. unit: 等待时间的单位为 TimeUnit.SECONDS。
  5. workQueue:任务队列为 ArrayBlockingQueue,并且容量为 100;
  6. handler:饱和策略为 CallerRunsPolicy

示例代码2:Callable+ThreadPoolExecutor

import java.util.concurrent.Callable;

public class MyCallable implements Callable<String> {
    @Override
    public String call() throws Exception {
        Thread.sleep(1000);
        //返回执行当前 Callable 的线程名字
        return Thread.currentThread().getName();
    }
}
import java.util.ArrayList;
import java.util.Date;
import java.util.List;
import java.util.concurrent.ArrayBlockingQueue;
import java.util.concurrent.Callable;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.Future;
import java.util.concurrent.ThreadPoolExecutor;
import java.util.concurrent.TimeUnit;

publicclass CallableDemo {

    privatestaticfinalint CORE_POOL_SIZE = 5;
    privatestaticfinalint MAX_POOL_SIZE = 10;
    privatestaticfinalint QUEUE_CAPACITY = 100;
    privatestaticfinal Long KEEP_ALIVE_TIME = 1L;

    public static void main(String[] args) {

        //使用阿里巴巴推荐的创建线程池的方式
        //通过ThreadPoolExecutor构造函数自定义参数创建
        ThreadPoolExecutor executor = new ThreadPoolExecutor(
                CORE_POOL_SIZE,
                MAX_POOL_SIZE,
                KEEP_ALIVE_TIME,
                TimeUnit.SECONDS,
                new ArrayBlockingQueue<>(QUEUE_CAPACITY),
                new ThreadPoolExecutor.CallerRunsPolicy());

        List<Future<String>> futureList = new ArrayList<>();
        Callable<String> callable = new MyCallable();
        for (int i = 0; i < 10; i++) {
            //提交任务到线程池
            Future<String> future = executor.submit(callable);
            //将返回值 future 添加到 list,我们可以通过 future 获得 执行 Callable 得到的返回值
            futureList.add(future);
        }
        for (Future<String> fut : futureList) {
            try {
                System.out.println(new Date() + "::" + fut.get());
            } catch (InterruptedException | ExecutionException e) {
                e.printStackTrace();
            }
        }
        //关闭线程池
        executor.shutdown();
    }
}

线程池原理分析

通过以上代码输出结果可以看出:线程池每次会同时执行 5 个任务,这 5 个任务执行完之后,剩余的 5 个任务才会被执行。

为了搞懂线程池的原理,我们需要首先分析一下 execute方法。在 以上中的 Demo 中我们使用 executor.execute(worker)来提交一个任务到线程池中去,这个方法非常重要,下面我们来看看它的源码:

// 存放线程池的运行状态 (runState) 和线程池内有效线程的数量 (workerCount)
   privatefinal AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));

    private static int workerCountOf(int c) {
        return c & CAPACITY;
    }

    privatefinal BlockingQueue<Runnable> workQueue;

    public void execute(Runnable command) {
        // 如果任务为null,则抛出异常。
        if (command == null)
            thrownew NullPointerException();
        // ctl 中保存的线程池当前的一些状态信息
        int c = ctl.get();

        //  下面会涉及到 3 步 操作
        // 1.首先判断当前线程池中之行的任务数量是否小于 corePoolSize
        // 如果小于的话,通过addWorker(command, true)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
        if (workerCountOf(c) < corePoolSize) {
            if (addWorker(command, true))
                return;
            c = ctl.get();
        }
        // 2.如果当前之行的任务数量大于等于 corePoolSize 的时候就会走到这里
        // 通过 isRunning 方法判断线程池状态,线程池处于 RUNNING 状态才会被并且队列可以加入任务,该任务才会被加入进去
        if (isRunning(c) && workQueue.offer(command)) {
            int recheck = ctl.get();
            // 再次获取线程池状态,如果线程池状态不是 RUNNING 状态就需要从任务队列中移除任务,并尝试判断线程是否全部执行完毕。同时执行拒绝策略。
            if (!isRunning(recheck) && remove(command))
                reject(command);
                // 如果当前线程池为空就新创建一个线程并执行。
            elseif (workerCountOf(recheck) == 0)
                addWorker(null, false);
        }
        //3. 通过addWorker(command, false)新建一个线程,并将任务(command)添加到该线程中;然后,启动该线程从而执行任务。
        //如果addWorker(command, false)执行失败,则通过reject()执行相应的拒绝策略的内容。
        elseif (!addWorker(command, false))
            reject(command);
    }

以下为线程池的实现原理:

在这里插入图片描述

在代码中模拟了 10 个任务,我们配置的核心线程数为 5 、等待队列容量为 100 ,所以每次只可能存在 5 个任务同时执行,剩下的 5 个任务会被放到等待队列中去。当前的 5 个任务之行完成后,才会之行剩下的 5 个任务。

几个常见的对比

RunnableVSCallable

Runnable自 Java 1.0 以来一直存在,但Callable仅在 Java 1.5 中引入,目的就是为了来处理Runnable不支持的用例。Runnable 接口不会返回结果或抛出检查异常,但是**Callable 接口**可以。所以,如果任务不需要返回结果或抛出异常推荐使用 Runnable 接口,这样代码看起来会更加简洁。

工具类 Executors 可以实现 Runnable 对象和 Callable 对象之间的相互转换。(Executors.callable(Runnable task)或 Executors.callable(Runnable task,Object resule))。

execute()VSsubmit()
  1. execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功与否;
  2. submit()方法用于提交需要返回值的任务。线程池会返回一个 Future 类型的对象,通过这个 Future 对象可以判断任务是否执行成功,并且可以通过 Futureget()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用 get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。
shutdown()VSshutdownNow()
  • shutdown() :关闭线程池,线程池的状态变为 SHUTDOWN。线程池不再接受新任务了,但是队列里的任务得执行完毕。
  • shutdownNow() :关闭线程池,线程的状态变为 STOP。线程池会终止当前正在运行的任务,并停止处理排队的任务并返回正在等待执行的 List。
isTerminated()VSisShutdown()
  • isShutDown 当调用 shutdown() 方法后返回为 true。
  • isTerminated 当调用 shutdown() 方法后,并且所有提交的任务完成后返回为 true

几种常见线程池详解

FixedThreadPool

概述

FixedThreadPool 被称为可重用固定线程数的线程池。通过 Executors 类中的相关源代码来看一下相关实现:

/**
     * 创建一个可重用固定数量线程的线程池
     */
    public static ExecutorService newFixedThreadPool(int nThreads, ThreadFactory threadFactory) {
        returnnew ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>(),
                                      threadFactory);
    }

外还有一个 FixedThreadPool 的实现方法,和上面的类似

public static ExecutorService newFixedThreadPool(int nThreads) {
        returnnew ThreadPoolExecutor(nThreads, nThreads,
                                      0L, TimeUnit.MILLISECONDS,
                                      new LinkedBlockingQueue<Runnable>());
    }

从上面源代码可以看出新创建的 FixedThreadPoolcorePoolSizemaximumPoolSize 都被设置为 nThreads,这个 nThreads 参数是我们使用的时候自己传递的。

执行任务过程介绍

FixedThreadPoolexecute() 方法运行示意图

在这里插入图片描述

上图说明:

  1. 如果当前运行的线程数小于 corePoolSize, 如果再来新任务的话,就创建新的线程来执行任务;
  2. 当前运行的线程数等于 corePoolSize 后, 如果再来新任务的话,会将任务加入 LinkedBlockingQueue
  3. 线程池中的线程执行完 手头的任务后,会在循环中反复从 LinkedBlockingQueue 中获取任务来执行
为什么不推荐使用FixedThreadPool?

FixedThreadPool 使用无界队列 LinkedBlockingQueue(队列的容量为 Intger.MAX_VALUE)作为线程池的工作队列会对线程池带来如下影响 :

  1. 当线程池中的线程数达到 corePoolSize 后,新任务将在无界队列中等待,因此线程池中的线程数不会超过 corePoolSize;
  2. 由于使用无界队列时 maximumPoolSize 将是一个无效参数,因为不可能存在任务队列满的情况。所以,通过创建 FixedThreadPool的源码可以看出创建的 FixedThreadPoolcorePoolSizemaximumPoolSize 被设置为同一个值。
  3. 由于 1 和 2,使用无界队列时 keepAliveTime 将是一个无效参数;
  4. 运行中的 FixedThreadPool(未执行 shutdown()shutdownNow())不会拒绝任务,在任务比较多的时候会导致 OOM(内存溢出)。

SingleThreadExecutor详情

概述

SingleThreadExecutor 是只有一个线程的线程池。下面看看SingleThreadExecutor 的实现:

/**
     *返回只有一个线程的线程池
     */
    public static ExecutorService newSingleThreadExecutor(ThreadFactory threadFactory) {
        returnnew FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>(),
                                    threadFactory));
    }

public static ExecutorService newSingleThreadExecutor() {
        returnnew FinalizableDelegatedExecutorService
            (new ThreadPoolExecutor(1, 1,
                                    0L, TimeUnit.MILLISECONDS,
                                    new LinkedBlockingQueue<Runnable>()));
    }

从上面源代码可以看出新创建的 SingleThreadExecutorcorePoolSizemaximumPoolSize 都被设置为 1.其他参数和 FixedThreadPool 相同。

执行任务过程介绍

SingleThreadExecutor 的运行示意图

在这里插入图片描述

上图说明;

  1. 如果当前运行的线程数少于 corePoolSize,则创建一个新的线程执行任务;
  2. 当前线程池中有一个运行的线程后,将任务加入 LinkedBlockingQueue
  3. 线程执行完当前的任务后,会在循环中反复从LinkedBlockingQueue 中获取任务来执行
为什么不推荐使用SingleThreadExecutor?

SingleThreadExecutor 使用无界队列 LinkedBlockingQueue 作为线程池的工作队列(队列的容量为 Intger.MAX_VALUE)。SingleThreadExecutor 使用无界队列作为线程池的工作队列会对线程池带来的影响与 FixedThreadPool 相同。说简单点就是可能会导致 OOM

CachedThreadPool详解

概述

CachedThreadPool 是一个会根据需要创建新线程的线程池。下面通过源码来看看 CachedThreadPool 的实现:

/**
     * 创建一个线程池,根据需要创建新线程,但会在先前构建的线程可用时重用它。
     */
    public static ExecutorService newCachedThreadPool(ThreadFactory threadFactory) {
        returnnew ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>(),
                                      threadFactory);
    }

public static ExecutorService newCachedThreadPool() {
        returnnew ThreadPoolExecutor(0, Integer.MAX_VALUE,
                                      60L, TimeUnit.SECONDS,
                                      new SynchronousQueue<Runnable>());
    }

CachedThreadPoolcorePoolSize 被设置为空(0),maximumPoolSize被设置为 Integer.MAX.VALUE,即它是无界的,这也就意味着如果主线程提交任务的速度高于 maximumPool 中线程处理任务的速度时,CachedThreadPool 会不断创建新的线程。极端情况下,这样会导致耗尽 cpu 和内存资源。

执行任务过程介绍

CachedThreadPool 的 execute()方法的执行示意图

在这里插入图片描述

上图说明:

  1. 首先执行 SynchronousQueue.offer(Runnable task) 提交任务到任务队列。如果当前 maximumPool 中有闲线程正在执行 SynchronousQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS),那么主线程执行 offer 操作与空闲线程执行的 poll 操作配对成功,主线程把任务交给空闲线程执行,execute()方法执行完成,否则执行下面的步骤 2;
  2. 当初始 maximumPool 为空,或者 maximumPool 中没有空闲线程时,将没有线程执行 SynchronousQueue.poll(keepAliveTime,TimeUnit.NANOSECONDS)。这种情况下,步骤 1 将失败,此时 CachedThreadPool 会创建新线程执行任务,execute 方法执行完成
为什么不推荐使用CachedThreadPool?

CachedThreadPool允许创建的线程数量为 Integer.MAX_VALUE ,可能会创建大量线程,从而导致 OOM

线程池大小确定

线程池数量的确定一直是困扰着程序员的一个难题,大部分在设定线程池大小的时候就是随心而定。并没有考虑过这样大小的配置是否会带来什么问题

首先,可以肯定的一点是线程池大小设置过大或者过小都会有问题。合适的才是最好,貌似在 95 % 的场景下都是合适的。

  • 如果我们设置的线程池数量太小的话,如果同一时间有大量任务/请求需要处理,可能会导致大量的请求/任务在任务队列中排队等待执行,甚至会出现任务队列满了之后任务/请求无法处理的情况,或者大量任务堆积在任务队列导致 OOM。这样很明显是有问题的!CPU 根本没有得到充分利用
  • 如果我们设置线程数量太大,大量线程可能会同时在争取 CPU 资源,这样会导致大量的上下文切换,从而增加线程的执行时间,影响了整体执行效率

上下文切换:

多线程编程中一般线程的个数都大于 CPU 核心的个数,而一个 CPU 核心在任意时刻只能被一个线程使用,为了让这些线程都能得到有效执行,CPU 采取的策略是为每个线程分配时间片并轮转的形式。当一个线程的时间片用完的时候就会重新处于就绪状态让给其他线程使用,这个过程就属于一次上下文切换。概括来说就是:当前任务在执行完 CPU 时间片切换到另一个任务之前会先保存自己的状态,以便下次再切换回这个任务时,可以再加载这个任务的状态。任务从保存到再加载的过程就是一次上下文切换

上下文切换通常是计算密集型的。也就是说,它需要相当可观的处理器时间,在每秒几十上百次的切换中,每次切换都需要纳秒量级的时间。所以,上下文切换对系统来说意味着消耗大量的 CPU 时间,事实上,可能是操作系统中时间消耗最大的操作。

Linux 相比与其他操作系统(包括其他类 Unix 系统)有很多的优点,其中有一项就是,其上下文切换和模式切换的时间消耗非常少。

有一个简单并且适用面比较广的公式:

  • CPU 密集型任务(N+1): 这种任务消耗的主要是 CPU 资源,可以将线程数设置为 N(CPU 核心数)+1,比 CPU 核心数多出来的一个线程是为了防止线程偶发的缺页中断,或者其它原因导致的任务暂停而带来的影响。一旦任务暂停,CPU 就会处于空闲状态,而在这种情况下多出来的一个线程就可以充分利用 CPU 的空闲时间。
  • I/O 密集型任务(2N): 这种任务应用起来,系统会用大部分的时间来处理 I/O 交互,而线程在处理 I/O 的时间段内不会占用 CPU 来处理,这时就可以将 CPU 交出给其它线程使用。因此在 I/O 密集型任务的应用中,我们可以多配置一些线程,具体的计算方法是 2N。
;