1. 如何理解“分布式”?
经常听到”分布式系统“,”分布式计算“,”分布式算法“。分布式的具体含义是什么?狭义的分布是指,指多台PC在地理位置上分布在不同的地方。
2. 分布式系统
分布式系统:多个能独立运行的计算机(称为结点)组成。各个结点利用计算机网络进行信息传递,从而实现共同的“目标或者任务”。
分布式程序: 运行在分布式系统上的计算机程序。
分布式计算:利用分布式系统解决来计算问题。在分布式计算里,一个问题被细化成多个任务,每个任务可以被一个或者多个计算机来完成。
区分分布式计算和并行计算:共同点都是大任务划分为小任务。不同点: 分布式计算:基于多台PC,每台PC完成同一任务中的不同部分。分布式的计算被分解后的小任务互相之间有独立性,节点之间的结果几乎不互相影响,实时性要求不高。并行计算:基于同一个台PC,利用CPU的多核共同完成一个任务。
1)分布式操作系统
分布式操作系统:负责管理分布式处理系统资源和控制分布式程序运行。它和集中式操作系统的区别在于资源管理、进程通信和系统结构等方面。
2)分布式文件系统
分布式文件系统具有执行远程文件存取的能力,并以透明方式对分布在网络上的文件进行管理和存取。
3)分布式程序设计和编译解释系统
分布式程序设计语言用于编写运行于分布式计算机系统上的分布式程序。一个分布式程序由若干个可以独立执行的程序模块组成,它们分布于一个分布式处理系统的多台计算机上被同时执行。它与集中式的程序设计语言相比有三个特点:分布性、通信性和稳健性。
分层应用程序可以按层数进行划分,信息可以从数据层(通常存储在数据库)传送到表现层(显示在客户端上)。通常每层相对于其他层来说都运行在不同的系统中,或者在同一系统中的不同进程空间里。分层好处:减小整个应用程序的复杂性;使应用程序能够更好的扩展,跟得上企业发展的需要。
- 两层应用程序: 典型的结构,一个客户端的用户PC机(前端);一个包含数据库的网络服务器(后端)。逻辑上根据两者的物理位置划分。通常客户端包含大部分业务逻辑,随着数据库及存储过程的发展,SQL语言允许业务逻辑在数据库服务器中存储并执行。
- 三层应用程序:目前最常用的是三层应用程序结构,包含一个用户服务层(表现层),一个业务服务层和一个数据服务层。业务逻辑层从用户界面和数据源中分离出来。 由于两层应用程序即客户端/服务器端结构的功能限制,分布式应用程序通常分为三层或者更多层。每层的组件都执行一个特定类型的处理。
3)分布式数据库
之我见:分布式数据库,由分布在不同地方(地理位置上的分布)的多个数据库(称为站点)连接(基于计算机网络来连接)而成。利用分布式DBMS对各个站点统一管理,各个站点逻辑上统一起来。基于数据分布的透明性,仿佛在管理单个站点上的数据。其优点在于:容错,提高访问速度。
wiki官方解释: 分布式数据库是用计算机网络将物理上分散的多个数据库单元连接起来组成的一个逻辑上统一的数据库。每个被连接起来的数据库单元称为站点或结点。分布式数据库有一个统一的数据库管理系统来进行管理,称为分布式数据库管理系统。
分布式数据库的基本特点包括:物理分布性、逻辑整体性和站点自治性。从这三个基本特点还可以导出的其它特点有:数据分布透明性、集中与自治相结合的控制机制、适当的数据冗余度和事务管理的分布性。分布式数据库按照各站点中数据库管理系统的数据模型的异同分为异构型分布式数据库和同构型分布式数据库,按照控制系统的类型分为全局控制集中性、全局控制分散型和全局控制可变型
3. Hadoop , HDFS, HBase, Hive
之我见:
Hadoop是一个分布式系统基础框架,基于这个框架开发分布式应用程序,利用集群的高速运算和存储的威力。类似于,基于NVIDIA 的 CUDA并行架构开发并行程序,发挥GPU的并行计算能力。
HDFS是hadoop的文件系统。基于HDFS,你可以对文件进行操作,例如新建,删除,编辑,重命名等。
Hbase: 基于Hadoop架构的数据库系统。不是关系型数据库,基于列的模式。
Hive: 基于hbase的高层语言。类似于SQL --- 访问和处理关系型数据库的计算机语言。
官方解释:
Hadoop是一个分布式系统基础架构,由Apache基金会开发。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力高速运算和存储。
HDFS(Hadoop Distributed File System)是Hadoop实现的一个分布式文件系统。它存储 Hadoop 集群中所有存储节点上的文件。对外部客户机而言,HDFS 就像一个传统的分级文件系统。可以创建、删除、移动或重命名文件,等等。但是 HDFS 的架构是基于一组特定的节点构建的,存储在 HDFS 中的文件被分成块,然后将这些块复制到多个计算机中(DataNode)。这与传统的 RAID 架构大不相同。块的大小(通常为 64MB)和复制的块数量在创建文件时由客户机决定。NameNode 可以控制所有文件操作。HDFS 内部的所有通信都基于标准的 TCP/IP 协议。
HBase – Hadoop Database,是一个高可靠性、高性能、面向列、可伸缩的分布式存储系统,利用HBase技术可在廉价PC Server上搭建起大规模结构化存储集群。HBase是Apache的Hadoop项目的子项目。HBase不同于一般的关系数据库,它是一个适合于非结构化数据存储的数据库。另一个不同的是HBase基于列的而不是基于行的模式。Hadoop HDFS为HBase提供了高可靠性的底层存储支持,Hadoop MapReduce为HBase提供了高性能的计算能力,Zookeeper为HBase提供了稳定服务和failover机制。此外,Pig和hive还为HBase提供了高层语言支持,使得在HBase上进行数据统计处理变的非常简单。 Sqoop则为HBase提供了方便的RDBMS数据导入功能,使得传统数据库数据向HBase中迁移变的非常方便。HBase的数据模型和存储结构,参考 http://www.searchtb.com/2011/01/understanding-hbase.html
Hive是基于Hadoop的一个数据仓库工具,可以将结构化的数据文件(例如xml)映射为一张数据库表,并提供完整的sql查询功能,可以将sql语句转换为MapReduce任务进行运行。 其优点是学习成本低,可以通过类SQL语句快速实现简单的MapReduce统计,不必开发专门的MapReduce应用,十分适合数据仓库的统计分析。
并行计算:并行计算是相对于串行计算来说的。可分为时间上的并行和空间上的并行。 时间上的并行就是指流水线技术,而空间上的并行则是指用多个处理器并发的执行计算。例如基于CUDA编程。并行计算的目的就是提供单处理器无法提供的性能(处理器能力或存储器),使用多处理器求解单个问题。
总结:并行的主体 -- 处理器;进程/线程级并行。
分布式计算:分布式计算研究如何把一个需要非常巨大的计算能力才能解决的问题分成许多小的部分,然后把这些部分分配给许多计算机进行处理,最后把这些计算结果综合起来得到最终的结果。最近的分布式计算项目已经被用于使用世界各地成千上万位志愿者的计算机的闲置计算能力,通过因特网,可以分析来自外太空的电讯号,寻找隐蔽的黑洞,并探索可能存在的外星智慧生命等。
总结:并行的主体 -- 计算机;各个计算机并行
并行计算与分布式计算的区别:(1)简单的理解,并行计算借助并行算法和并行编程语言能够实现进程级并行(如MPI)和线程级并行(如openMP)。而分布式计算只是将任务分成小块到各个计算机分别计算各自执行。(2)粒度方面,并行计算中,处理器间的交互一般很频繁,往往具有细粒度和低开销的特征,并且被认为是可靠的。而在分布式计算中,处理器间的交互不频繁,交互特征是粗粒度,并且被认为是不可靠的。并行计算注重短的执行时间,分布式计算则注重长的正常运行时间。(3)联系,并行计算和分布式计算两者是密切相关的。某些特征与程度(处理器间交互频率)有关,而我们还未对这种交叉点(crossover point)进行解释。另一些特征则与侧重点有关(速度与可靠性),而且我们知道这两个特性对并行和分布两类系统都很重要。(4)总之,这两种不同类型的计算在一个多维空间中代表不同但又相邻的点。
集群计算:计算机集群使将一组松散集成的计算机软件和/或硬件连接起来高度紧密地协作完成计算工作。在某种意义上,他们可以被看作是一台计算机。集群系统中的单个计算机通常称为节点,通常通过局域网连接,但也有其它的可能连接方式。集群计算机通常用来改进单个计算机的计算速度和/或可靠性。一般情况下集群计算机比单个计算机,比如工作站或超级计算机性价比要高得多。根据组成集群系统的计算机之间体系结构是否相同,集群可分为同构与异构两种。集群计算机按功能和结构可以分为,高可用性集群(High-availability (HA) clusters)、负载均衡集群(Loadbalancing clusters)、高性能计算集群(High-performance (HPC)clusters)、网格计算(Grid computing)。
- 高可用性集群:一般是指当集群中有某个节点失效的情况下,其上的任务会自动转移到其他正常的节点上。还指可以将集群中的某节点进行离线维护再上线,该过程并不影响整个集群的运行。
- 负载均衡集群:负载均衡集群运行时,一般通过一个或者多个前端负载均衡器,将工作负载分发到后端的一组服务器上,从而达到整个系统的高性能和高可用性。这样的计算机集群有时也被称为服务器群(Server Farm)。 一般高可用性集群和负载均衡集群会使用类似的技术,或同时具有高可用性与负载均衡的特点。Linux虚拟服务器(LVS)项目在Linux操作系统上提供了最常用的负载均衡软件。
- 高性能计算集群: 高性能计算集群采用将计算任务分配到集群的不同计算节点儿提高计算能力,因而主要应用在科学计算领域。比较流行的HPC采用Linux操作系统和其它一些免费软件来完成并行运算。这一集群配置通常被称为Beowulf集群。这类集群通常运行特定的程序以发挥HPC cluster的并行能力。这类程序一般应用特定的运行库, 比如专为科学计算设计的MPI库。HPC集群特别适合于在计算中各计算节点之间发生大量数据通讯的计算作业,比如一个节点的中间结果或影响到其它节点计算结果的情况。
网格计算:网格计算是分布式计算的一种,也是一种与集群计算非常相关的技术。如果我们说某项工作是分布式的,那么,参与这项工作的一定不只是一台计算机,而是一个计算机网络,显然这种“蚂蚁搬山”的方式将具有很强的数据处理能力。网格计算的实质就是组合与共享资源并确保系统安全。网格计算通过利用大量异构计算机的未用资源(CPU周 期和磁盘存储),将其作为嵌入在分布式电信基础设施中的一个虚拟的计算机集群,为解决大规模的计算问题提供一个模型。网格计算的焦点放在支持跨管理域计算 的能力,这使它与传统的计算机集群或传统的分布式计算相区别。网格计算的目标是解决对于任何单一的超级计算机来说仍然大得难以解决的问题,并同时保持解决 多个较小的问题的灵活性。这样,网格计算就提供了一个多用户环境。
集群计算与网格计算的区别:(1)简单地,网格与传统集群的主要差别是网格是连接一组相关并不信任的计算机,它的运作更像一个计算公共设施而不是一个独立的计算机。网格通常比集群支持更多不同类型的计算机集合。(2)网格本质上就是动态的,集群包含的处理器和资源的数量通常都是静态的。在网格上,资源则可以动态出现,资源可以根据需要添加到网格中或从网格中删除。(3) 网格天生就是在本地网、城域网或广域网上进行分布的。网格可以分布在任何地方。而集群物理上都包含在一个位置的相同地方,通常只是局域网互连。集群互连技 术可以产生非常低的网络延时,如果集群距离很远,这可能会导致产生很多问题。物理临近和网络延时限制了集群地域分布的能力,而网格由于动态特性,可以提供 很好的高可扩展性。(4)集群仅仅通过增加服务器满足增长的需求。然而,集群的服务器数量、以及由此导致的集群性能是有限的:互连网络容量。也就是说如果一味地想通过扩大规模来提高集群计算机的性能,它的性价比会相应下降,这意味着我们不可能无限制地扩大集群的规模。 而网格虚拟出空前的超级计算机,不受规模的限制,成为下一代Internet的发展方向。(5)集群和网格计算是相互补充的。很多网格都在自己管理的资源中采用了集群。实际上,网格用户可能并不清楚他的工作负载是在一个远程的集群上执行的。尽管网格与集群之间存在很多区别,但是这些区别使它们构成了一个非常重要的关系,因为集群在网格中总有一席之地—— 特定的问题通常都需要一些紧耦合的处理器来解决。然而,随着网络功能和带宽的发展,以前采用集群计算很难解决的问题现在可以使用网格计算技术解决了。理解网格固有的可扩展性和集群提供的紧耦合互连机制所带来的性能优势之间的平衡是非常重要的。
云计算:云计算是最新开始的新概念,它不只是计算等计算机概念,还有运营服务等概念了。它是分布式计算、并行计算和网格计算的发展,或者说是这些概念的商业实现。云计算不但包括分布式计算还包括分布式存储和分布式缓存。分布式存储又包括分布式文件存储和分布式数据存储。
云计算与并行、分布式、网格和集群计算的区别:云计算是从集群技术发展而来,区别在于集群虽然把多台机器联了起来,但其某项具体任务执行的时候还是会被转发到某台服务器上,而云可以简单的认为是任务可以被分割成多个进程在多台服务器上并行计算,然后得到结果,好处在于大数据量的操作性能非常好。云可以使用廉价的PC服务器 ,可以管理大数据量与大集群,关键技术在于能够对云内的基础设施进行动态按需分配与管理。云计算与并行计算、分布式计算的区别,以计算机用户来说,并行计算是由单个用户完成的,分布式计算是由多个用户合作完成的,云计算是没有用户参与,而是交给网络另一端的服务器完成的。