Given a positive integer n, find the least number of perfect square numbers (for example, 1, 4, 9, 16, ...
) which sum to n.
For example, given n = 12
, return 3
because 12 = 4 + 4 + 4
; given n = 13
, return 2
because 13 = 4 + 9
.
Credits:
Special thanks to @jianchao.li.fighter for adding this problem and creating all test cases.
解题技巧:
采用动态规划求解,状态转移方程为:dp[j*j+i] = min(dp[j*j+i], dp[i]+1)
代码:
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
#define MAX 0x3f3f3f
int numSquares(int n)
{
vector<int> dp(n + 1, MAX);
dp[0] = 0;
for (int i = 0; i <= n; i++)
{
for (int j = 1; j*j + i <= n; j++)
{
dp[j*j + i] = min(dp[j*j + i], dp[i] + 1);
}
}
return dp[n];
}
int main()
{
int n;
while(cin >> n)
cout << numSquares(n) << endl;
return 0;
}