原文网址:http://blog.csdn.net/qll125596718/article/details/8426458
KNN缺点
实现k近邻法时,主要考虑的问题是如何对训练数据进行快速k近邻搜索,这点在特征空间的维数大以及训练数据容量大时尤其重要。k近邻法的最简单实现是线性扫描,这时要计算输入实例与每一个训练实例的距离,当训练集很大时,计算非常耗时,这种方法是不可行的。为了提高k近邻搜索的效率,可以考虑使用特殊的结构存储训练数据,以减少计算距离的次数。具体方法有很多,这里介绍kd树方法。
KD树的构建与搜索
kd树是二叉树,表示对k维空间的一个划分。构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间进行切分,构成一系列的k维超矩形区域。kd树的每一个节点对应于一个k维超矩形区域。k-d树是一个二叉树,每个节点表示一个空间范围。
确定split域:对于所有描述子数据(特征矢量),统计它们在每个维上的数据方差。假设每条数据记录为64维,可计算64个方差。挑选出最大值,对应的维就是split域的值。数据方差大表明沿该坐标轴方向上的数据分散得比较开,在这个方向上进行数据分割有较好的分辨率;
在k-d树中进行数据的查找也是特征匹配的重要环节,其目的是检索在k-d树中与查询点距离最近的数据点。
通过二叉搜索,顺着搜索路径很快就能找到最邻近的近似点。
而找到的叶子节点并不一定就是最邻近的,最邻近肯定距离查询点更近,应该位于以查询点为圆心且通过叶子节点的圆域内。为了找到真正的最近邻,还需要进行’回溯’操作:算法沿搜索路径反向查找是否有距离查询点更近的数据点。