Bootstrap

构建LangChain应用程序的示例代码:50、如何在检索-生成 (RAG) 应用中利用多模态大型语言模型 (LLM) 处理包含文本和图像的混合文档的示例

多模态 RAG

许多文档包含多种内容类型,包括文本和图像。

然而,大多数 RAG 应用中,图像中捕获的信息往往被忽略。

随着多模态 LLM 的出现,如 GPT-4V,值得考虑如何在 RAG 中利用图像:

选项 1:
  • 使用多模态嵌入(例如 CLIP)来嵌入图像和文本
  • 使用相似性搜索检索图像和文本
  • 将原始图像和文本片段传递给多模态 LLM 进行答案合成
选项 2:
  • 使用多模态 LLM(例如 GPT-4VLLaVAFUYU-8b)从图像生成文本摘要
  • 嵌入并检索文本
  • 将文本片段传递给 LLM 进行答案合成
选项 3:
  • 使用多模态 LLM(例如 GPT-4VLLaVA、或 FUYU-8b)直接从图像和文本中生成答案
  • 使用引用原始图像嵌入和检索图像摘要
  • 将原始图像和文本块传递到多模态LLM以进行答案合成

本文重点介绍选项3 。

  • 我们将使用非结构化来解析文档 (PDF) 中的图像、文本和表格。
  • 我们将使用带有 Chroma 的多向量检索器来存储原始文本和图像以及它们的摘要以供检索。
  • 我们将使用 GPT-4V 进行图像摘要(用于检索)以及通过图像和文本(或表格)的联合审查进行最终答案合成。

该选项 Option 2 适用于LLM无法使用多模态进行答案综合的情况(例如,成本等)。
在这里插入图片描述

Packages 包

除了以下pip包外,您还需要系统中的 poppler (安装说明)和 tesseract (安装说明)。

! pip install -U langchain openai chromadb langchain-experimental # (newest versions required for multi-modal)

! pip install "unstructured[all-docs]" pillow pydantic lxml pillow matplotlib chromadb tiktoken

Data Loading 数据加载

对 PDF 表格、文本和图像进行分区

让我们看看 Jamin Ball 的一个受欢迎的博客。

这是一个很好的用例,因为大部分信息都是在图像(表格或图表)中捕获的。

我们用它来 Unstructured 对它进行分区。


要跳过 Unstructured 提取:

这是一个 zip 文件,其中包含提取的图像和 pdf 的子集。

如果您想使用提供的文件夹,那么只需为文档选择 pdf 加载器:

from langchain_community.document_loaders import PyPDFLoader
loader = PyPDFLoader(path + fname)
docs = loader.load()
tables = [] # Ignore w/ basic pdf loader
texts = [d.page_content for d in docs]
from langchain_text_splitters import CharacterTextSplitter
from unstructured.partition.pdf import partition_pdf


# Extract elements from PDF
def extract_pdf_elements(path, fname):
    """
    Extract images, tables, and chunk text from a PDF file.
    path: File path, which is used to dump images (.jpg)
    fname: File name
    """
    return partition_pdf(
        filename=path + fname,
        extract_images_in_pdf=False,
        infer_table_structure=True,
        chunking_strategy="by_title",
        max_characters=4000,
        new_after_n_chars=3800,
        combine_text_under_n_chars=2000,
        image_output_dir_path=path,
    )


# Categorize elements by type
def categorize_elements(raw_pdf_elements):
    """
    Categorize extracted elements from a PDF into tables and texts.
    raw_pdf_elements: List of unstructured.documents.elements
    """
    tables = []
    texts = []
    for element in raw_pdf_elements:
        if "unstructured.documents.elements.Table" in str(type(element)):
            tables.append(str(element))
        elif "unstructured.documents.elements.CompositeElement" in str(type(element)):
            texts.append(str(element))
    return texts, tables


# File path
fpath = "/Users/rlm/Desktop/cj/"
fname = "cj.pdf"

# Get elements
raw_pdf_elements = extract_pdf_elements(fpath, fname)

# Get text, tables
texts, tables = categorize_elements(raw_pdf_elements)

# Optional: Enforce a specific token size for texts
text_splitter = CharacterTextSplitter.from_tiktoken_encoder(
    chunk_size=4000, chunk_overlap=0
)
joined_texts = " ".join(texts)
texts_4k_token = text_splitter.split_text(joined_texts)

Multi-vector retriever 多向量检索器

使用多向量检索器对图像(和/或文本、表格)摘要进行索引,但检索原始图像(以及原始文本或表格)。

Text and Table summaries 文本和表格摘要

我们将使用 GPT-4 来生成表格和可选的文本摘要。

如果使用较大的块大小(例如,如上所述,我们使用 4k 令牌块),则建议使用文本摘要。

摘要用于检索原始表和/或原始文本块。

from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI


# Generate summaries of text elements
def generate_text_summaries(texts, tables, summarize_texts=False):
    """
    Summarize text elements
    texts: List of str
    tables: List of str
    summarize_texts: Bool to summarize texts
    """

    # Prompt
    prompt_text = """You are an assistant tasked with summarizing tables and text for retrieval. \
    These summaries will be embedded and used to retrieve the raw text or table elements. \
    Give a concise summary of the table or text that is well optimized for retrieval. Table or text: {element} """
    prompt = ChatPromptTemplate.from_template(prompt_text)

    # Text summary chain
    model = ChatOpenAI(temperature=0, model="gpt-4")
    summarize_chain = {"element": lambda x: x} | prompt | model | StrOutputParser()

    # Initialize empty summaries
    text_summaries = []
    table_summaries = []

    # Apply to text if texts are provided and summarization is requested
    if texts and summarize_texts:
        text_summaries = summarize_chain.batch(texts, {"max_concurrency": 5})
    elif texts:
        text_summaries = texts

    # Apply to tables if tables are provided
    if tables:
        table_summaries = summarize_chain.batch(tables, {"max_concurrency": 5})

    return text_summaries, table_summaries


# Get text, table summaries
text_summaries, table_summaries = generate_text_summaries(
    texts_4k_token, tables, summarize_texts=True
)

Image summaries 图像摘要

我们将使用 GPT-4V 来生成图像摘要。

此处的 API 文档:

  • 我们传递 base64 编码的图像
import base64
import os

from langchain_core.messages import HumanMessage


def encode_image(image_path):
    """Getting the base64 string"""
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode("utf-8")


def image_summarize(img_base64, prompt):
    """Make image summary"""
    chat = ChatOpenAI(model="gpt-4-vision-preview", max_tokens=1024)

    msg = chat.invoke(
        [
            HumanMessage(
                content=[
                    {"type": "text", "text": prompt},
                    {
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{img_base64}"},
                    },
                ]
            )
        ]
    )
    return msg.content


def generate_img_summaries(path):
    """
    Generate summaries and base64 encoded strings for images
    path: Path to list of .jpg files extracted by Unstructured
    """

    # Store base64 encoded images
    img_base64_list = []

    # Store image summaries
    image_summaries = []

    # Prompt
    prompt = """You are an assistant tasked with summarizing images for retrieval. \
    These summaries will be embedded and used to retrieve the raw image. \
    Give a concise summary of the image that is well optimized for retrieval."""

    # Apply to images
    for img_file in sorted(os.listdir(path)):
        if img_file.endswith(".jpg"):
            img_path = os.path.join(path, img_file)
            base64_image = encode_image(img_path)
            img_base64_list.append(base64_image)
            image_summaries.append(image_summarize(base64_image, prompt))

    return img_base64_list, image_summaries


# Image summaries
img_base64_list, image_summaries = generate_img_summaries(fpath)

Add to vectorstore 添加到矢量存储

将原始文档和文档摘要添加到 Multi Vector Retriever:

  • 将原始文本、表格和图像存储在 docstore .
  • 将文本、表格摘要和图像摘要存储在 中 vectorstore,以便进行有效的语义检索。
import uuid

from langchain.retrievers.multi_vector import MultiVectorRetriever
from langchain.storage import InMemoryStore
from langchain_community.vectorstores import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings


def create_multi_vector_retriever(
    vectorstore, text_summaries, texts, table_summaries, tables, image_summaries, images
):
    """
    Create retriever that indexes summaries, but returns raw images or texts
    """

    # Initialize the storage layer
    store = InMemoryStore()
    id_key = "doc_id"

    # Create the multi-vector retriever
    retriever = MultiVectorRetriever(
        vectorstore=vectorstore,
        docstore=store,
        id_key=id_key,
    )

    # Helper function to add documents to the vectorstore and docstore
    def add_documents(retriever, doc_summaries, doc_contents):
        doc_ids = [str(uuid.uuid4()) for _ in doc_contents]
        summary_docs = [
            Document(page_content=s, metadata={id_key: doc_ids[i]})
            for i, s in enumerate(doc_summaries)
        ]
        retriever.vectorstore.add_documents(summary_docs)
        retriever.docstore.mset(list(zip(doc_ids, doc_contents)))

    # Add texts, tables, and images
    # Check that text_summaries is not empty before adding
    if text_summaries:
        add_documents(retriever, text_summaries, texts)
    # Check that table_summaries is not empty before adding
    if table_summaries:
        add_documents(retriever, table_summaries, tables)
    # Check that image_summaries is not empty before adding
    if image_summaries:
        add_documents(retriever, image_summaries, images)

    return retriever


# The vectorstore to use to index the summaries
vectorstore = Chroma(
    collection_name="mm_rag_cj_blog", embedding_function=OpenAIEmbeddings()
)

# Create retriever
retriever_multi_vector_img = create_multi_vector_retriever(
    vectorstore,
    text_summaries,
    texts,
    table_summaries,
    tables,
    image_summaries,
    img_base64_list,
)

RAG

构建检索器

我们需要将检索到的文档装箱到 GPT-4V 提示模板的正确部分。

import io
import re

from IPython.display import HTML, display
from langchain_core.runnables import RunnableLambda, RunnablePassthrough
from PIL import Image


def plt_img_base64(img_base64):
    """Disply base64 encoded string as image"""
    # Create an HTML img tag with the base64 string as the source
    image_html = f'<img src="data:image/jpeg;base64,{img_base64}" />'
    # Display the image by rendering the HTML
    display(HTML(image_html))


def looks_like_base64(sb):
    """Check if the string looks like base64"""
    return re.match("^[A-Za-z0-9+/]+[=]{0,2}$", sb) is not None


def is_image_data(b64data):
    """
    Check if the base64 data is an image by looking at the start of the data
    """
    image_signatures = {
        b"\xff\xd8\xff": "jpg",
        b"\x89\x50\x4e\x47\x0d\x0a\x1a\x0a": "png",
        b"\x47\x49\x46\x38": "gif",
        b"\x52\x49\x46\x46": "webp",
    }
    try:
        header = base64.b64decode(b64data)[:8]  # Decode and get the first 8 bytes
        for sig, format in image_signatures.items():
            if header.startswith(sig):
                return True
        return False
    except Exception:
        return False


def resize_base64_image(base64_string, size=(128, 128)):
    """
    Resize an image encoded as a Base64 string
    """
    # Decode the Base64 string
    img_data = base64.b64decode(base64_string)
    img = Image.open(io.BytesIO(img_data))

    # Resize the image
    resized_img = img.resize(size, Image.LANCZOS)

    # Save the resized image to a bytes buffer
    buffered = io.BytesIO()
    resized_img.save(buffered, format=img.format)

    # Encode the resized image to Base64
    return base64.b64encode(buffered.getvalue()).decode("utf-8")


def split_image_text_types(docs):
    """
    Split base64-encoded images and texts
    """
    b64_images = []
    texts = []
    for doc in docs:
        # Check if the document is of type Document and extract page_content if so
        if isinstance(doc, Document):
            doc = doc.page_content
        if looks_like_base64(doc) and is_image_data(doc):
            doc = resize_base64_image(doc, size=(1300, 600))
            b64_images.append(doc)
        else:
            texts.append(doc)
    return {"images": b64_images, "texts": texts}


def img_prompt_func(data_dict):
    """
    Join the context into a single string
    """
    formatted_texts = "\n".join(data_dict["context"]["texts"])
    messages = []

    # Adding image(s) to the messages if present
    if data_dict["context"]["images"]:
        for image in data_dict["context"]["images"]:
            image_message = {
                "type": "image_url",
                "image_url": {"url": f"data:image/jpeg;base64,{image}"},
            }
            messages.append(image_message)

    # Adding the text for analysis
    text_message = {
        "type": "text",
        "text": (
            "You are financial analyst tasking with providing investment advice.\n"
            "You will be given a mixed of text, tables, and image(s) usually of charts or graphs.\n"
            "Use this information to provide investment advice related to the user question. \n"
            f"User-provided question: {data_dict['question']}\n\n"
            "Text and / or tables:\n"
            f"{formatted_texts}"
        ),
    }
    messages.append(text_message)
    return [HumanMessage(content=messages)]


def multi_modal_rag_chain(retriever):
    """
    Multi-modal RAG chain
    """

    # Multi-modal LLM
    model = ChatOpenAI(temperature=0, model="gpt-4-vision-preview", max_tokens=1024)

    # RAG pipeline
    chain = (
        {
            "context": retriever | RunnableLambda(split_image_text_types),
            "question": RunnablePassthrough(),
        }
        | RunnableLambda(img_prompt_func)
        | model
        | StrOutputParser()
    )

    return chain


# Create RAG chain
chain_multimodal_rag = multi_modal_rag_chain(retriever_multi_vector_img)

Check 检查

检查检索;我们得到与我们的问题相关的图像。

# Check retrieval
query = "Give me company names that are interesting investments based on EV / NTM and NTM rev growth. Consider EV / NTM multiples vs historical?"
docs = retriever_multi_vector_img.invoke(query, limit=6)

# We get 4 docs
len(docs)
# Check retrieval
query = "What are the EV / NTM and NTM rev growth for MongoDB, Cloudflare, and Datadog?"
docs = retriever_multi_vector_img.invoke(query, limit=6)

# We get 4 docs
len(docs)
# We get back relevant images
plt_img_base64(docs[0])

在这里插入图片描述

Sanity Check 健全性检查

为什么会这样?让我们回顾一下我们存储的图像…

plt_img_base64(img_base64_list[3])

在这里插入图片描述
以下是我们在相似性搜索中嵌入和使用的相应摘要。

这张图片确实是从我们 query 这里检索的,因为它与这个摘要的相似性,这是非常合理的。

image_summaries[3]

RAG

现在让我们运行 RAG 并测试合成问题答案的能力。

# Run RAG chain
chain_multimodal_rag.invoke(query)

这是跟踪,我们可以看到传递给 LLM:

  • 问题 1:Trace 专注于投资建议
  • 问题 2:跟踪侧重于表提取

对于问题 1,我们可以看到我们传递了 3 个图像和一个文本块:
在这里插入图片描述

Considerations 考虑

Retrieval 检索

  • 检索是根据与图像摘要和文本块的相似性来执行的。
  • 这需要仔细考虑,因为如果存在竞争的文本块,图像检索可能会失败。
  • 为了缓解这种情况,我生成了更大的(4k 令牌)文本块,并将它们汇总起来以供检索。

Image Size 图像尺寸

  • 正如预期的那样,答案合成的质量似乎对图像大小很敏感。
  • 我将很快进行评估,以更仔细地测试这一点。

内容总结

本文探讨了在检索-生成(RAG)应用中,如何利用多模态大型语言模型(LLM)处理混合文档,这类文档通常包含文本和图像。文章提出了三种集成图像到RAG流程的方法,特别强调了第三种方法,即直接使用多模态LLM生成答案。通过非结构化工具解析PDF文件,结合Chroma多向量检索器和GPT-4V模型,文章展示了如何提取和处理图像、文本和表格数据。提供的代码示例涵盖了从环境配置到数据加载、多模态数据处理、检索器构建,以及最终的RAG链的实现。此外,文章还讨论了检索过程中的考虑因素,如图像尺寸和文本块的竞争性,以及如何优化这些因素以提高答案合成的质量。最终,通过实际查询的测试,验证了所提出方法的有效性。

扩展知识

多模态大型语言模型 (LLM)

多模态 LLM 如 GPT-4V 能够处理和生成包括图像在内的多种数据类型,使其在处理复杂的多模态数据时表现优异。

检索-生成 (RAG) 模型

RAG 模型结合了信息检索和生成模型,能够从大量文档中检索相关内容并生成连贯的答案,适用于需要从海量数据中提取并综合信息的应用场景。

CLIP 模型

CLIP (Contrastive Language–Image Pre-training) 是一种多模态模型,能够同时处理图像和文本,通过嵌入技术实现跨模态检索和分类任务。

;