Bootstrap

AI常见的算法和例子

人工智能(AI)中常见的算法分为多个领域,如机器学习、深度学习、强化学习、自然语言处理和计算机视觉等。以下是一些常见的算法及其用途:

例子代码:纠结哥/pytorch_learn


1. 机器学习 (Machine Learning)

监督学习 (Supervised Learning)
无监督学习 (Unsupervised Learning)
半监督学习 (Semi-supervised Learning)
  • 使用少量有标签数据和大量无标签数据,如自训练、自编码器(Autoencoder)。
强化学习 (Reinforcement Learning)

2. 深度学习 (Deep Learning)


3. 自然语言处理 (Natural Language Processing, NLP)

  • 词嵌入 (Word Embeddings):如 Word2Vec、GloVe,用于表示词语的语义
  • 循环神经网络 (RNN)LSTM/GRU:处理文本序列。
  • Transformer
    • BERT (Bidirectional Encoder Representations from Transformers):双向上下文理解模型。
    • GPT (Generative Pre-trained Transformer):生成式模型,用于文本生成。
  • 情感分析算法:基于分类的模型,用于提取情感极性。
  • 文本摘要算法:如 Seq2Seq 模型。

4. 计算机视觉 (Computer Vision)

  • 边缘检测算法:如 Canny、Sobel,用于图像预处理。
  • 目标检测算法:如 YOLO(You Only Look Once)、Faster R-CNN。
  • 图像分割算法:如 UNet、Mask R-CNN。
  • 人脸识别算法:如 OpenCV 的 Haar Cascades、深度学习的 FaceNet。
  • 图像生成与修复:如 GAN。

5. 优化算法

  • 梯度下降 (Gradient Descent):如 SGD、Momentum、Adam、RMSProp。
  • 遗传算法 (Genetic Algorithm):基于自然选择的优化方法。
  • 模拟退火算法 (Simulated Annealing):模仿物理退火过程。

6. 推荐系统算法

  • 协同过滤 (Collaborative Filtering):基于用户或物品的协作关系。
  • 矩阵分解 (Matrix Factorization):如 SVD,用于推荐。
  • 基于深度学习的推荐算法:如 DeepFM、Wide&Deep。

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;