1.索引概念
索引(index)是帮助MySQL高效获取数据的数据结构。在数据外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
1)无索引情况:从第一行开始扫描,一直扫描到最后一行,称之为全表扫描,性能很低。
2)有索引情况:如果我们针对于这张表建立了索引,假设索引结构就是二叉树,那么也就意味着,会对age这个字段建立一个二叉树的索引结构。
特点:
优势 | 劣势 |
提高数据检索的效率,降低数据库的IO成本 | 索引列也是要占用空间的。 |
通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗。 | 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行INSERT、UPDATE、DELETE时,效率降低。 |
2.索引结构
MySQL的索引是在存储引擎层实现的,不同的存储引擎有不同的索引结构。主要包含以下几种:
索引结构 | 描述 |
B+Tree索引 | 最常见的索引类型,大部分引擎都支持 B+ 树索引 |
Hash索引 | 底层数据结构是用哈希表实现的, 只有精确匹配索引列的查询才有效, 不支持范围查询 |
R-tree(空间索引) | 空间索引是MyISAM引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少 |
Full-text(全文索引) | 是一种通过建立倒排索引,快速匹配文档的方式。类似于Lucene,Solr,ES |
不同的存储引擎对于索引结构的支持情况如下:
索引 | InnoDB | MyISAM | Memory |
B+tree索引 | 支持 | 支持 | 支持 |
Hash 索引 | 不支持 | 不支持 | 支持 |
R-tree 索引 | 不支持 | 支持 | 不支持 |
Full-text | 5.6版本之后支持 | 支持 | 不支持 |
注:我们平常所说的索引,如果没有特别指明,都是指B+树结构组织的索引。
(1)二叉树
解决办法:红黑树是一棵自平衡二叉树,即便是顺序插入数据,最终形成的数据结构也是一棵平衡的二叉树,结构如下:
缺点:大数据量的情况下,层级越深,检索速度慢。
所以,在MySQL的索引结构中,并没有选择二叉树或者红黑树,而选择的是B+Tree。
(2)B-Tree
B-Tree(多路搜索树),B树是一种多叉路平衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。
以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5个指针。
注:树的度数指的是一个节点的子节点个数。
B-Tree 的数据插入过程动画参照: 黑马程序员 MySQL数据库入门到精通,从mysql安装到mysql高级、mysql优化全囊括_哔哩哔哩_bilibili
演示地址: B-Tree Visualization
例如:
(3)B+Tree
B+Tree是B-Tree的变种,
我们以一颗最大度数(max-degree)为4(4阶)的b+tree为例,来看一下其结构示意图:
我们可以看到,两部分:
- 绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
- 红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。
演示地址:https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。
(4)Hash
MySQL中除了支持B+Tree索引,还支持一种索引类型---Hash索引。
结构:哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。
特点:
- Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,<,……)
- 无法利用索引完成排序操作
- 查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+Tree索引
存储引擎支持
在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。
面试题:为什么InnoDB存储引擎选择使用B+Tree索引结构?
- 相对于二叉树,层级更少,搜索效率更高。
- 对于B-Tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低。
- 相对Hash索引,B+Tree支持范围匹配及排序操作。
3.索引分类
在MySQL数据库,索引分为以下几类:主键索引、唯一索引、常规索引、全文索引。
分类 | 含义 | 特点 | 关键字 |
主键索引 | 针对于表中主键创建的索引 | 默认自动创建, 只能有一个 | PRIMARY |
唯一索引 | 避免同一个表中某数据列中的值重复 | 可以有多个 | UNIQUE |
常规索引 | 快速定位特定数据 | 可以有多个 |
|
全文索引 | 全文索引查找的是文本中的关键词,而不是比较索引中的值 | 可以有多个 | FULLTEXT |
在InnoDB存储引擎中,根据索引的存储形式分为如下两种:
分类 | 含义 | 特点 |
聚集索引(Clustered Index) | 将数据存储与索引放到了一块,索引结构的叶子节点保存了行数据 | 必须有,而且只有一个 |
二级索引(Secondary Index) | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引。
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引。
- 如果没有主键,或没有合适的唯一索引,则InnoDB会自动生成一个rowid作为隐藏的聚集索引。
聚集索引和二级索引的具体结构如下:
- 聚集索引的叶子节点下挂的是这一行的数据 。
- 二级索引的叶子节点下挂的是该字段值对应的主键值。
当执行如下的SQL语句时,具体的查找过程如下:
具体过程如下:
①. 由于是根据name字段进行查询,所以先根据name='Arm'到name字段的二级索引中进行匹配查找。但是在二级索引中只能查找到 Arm 对应的主键值 10。
②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最终找到10对应的行row。
③. 最终拿到这一行的数据,直接返回即可。
回表查询:先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询。
面试题:以下两条SQL语句,那个执行效率高? 为什么?
A. select * from user where id = 10 ;
B. select * from user where name = 'Arm' ;
备注: id为主键,name字段创建的有索引;
解答:A 语句的执行性能要高于B 语句。
因为A语句直接走聚集索引,直接返回数据。 而B语句需要先查询name字段的二级索引,然后再查询聚集索引,也就是需要进行回表查询。
面试题:InnoDB主键索引的B+Tree高度为多高?
假设:
一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB的指针占用6个字节的空间,主键即使为bigint,占用字节数为8。
高度为2:
n * 8 + (n + 1) * 6 = 16*1024 , 算出n约为 1170
1171* 16 = 18736
也就是说,如果树的高度为2,则可以存储 18000 多条记录。
高度为3:
1171 * 1171 * 16 = 21939856
也就是说,如果树的高度为3,则可以存储 2200w 左右的记录。
4.索引语法
(1)创建索引
CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (Index_col_name,……);
(2)查看索引
SHOW INDEX FROM table_name;
(3)删除索引
DROP INDEX index_name ON table_name;
5.SQL性能分析
(1)SQL执行频率
MySQL 客户端连接成功后,通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令,可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
-- session 是查看当前会话 ; -- global 是查询全局数据 ; SHOW GLOBAL STATUS LIKE 'Com_______'; |
Com_delete: 删除次数
Com_insert: 插入次数
Com_select: 查询次数
Com_update: 更新次数
通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以查询为主,那么就要考虑对数据库的索引进行优化了。
查询频率可以借助慢查询日志。
(2)慢查询日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有SQL语句的日志。
MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。
如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
配置完毕之后,通过以下指令重新启动MySQL服务器进行测试,查看慢日志文件中记录的信息/var/lib/mysql/localhost-slow.log。
然后,再次查看开关情况,慢查询日志就已经打开了。
测试:
A.执行如下SQL语句:
B. 检查慢查询日志 :
最终我们发现,在慢查询日志中,只会记录执行时间超多我们预设时间(2s)的SQL,执行较快的SQL是不会记录的。
那这样,通过慢查询日志,就可以定位出执行效率比较低的SQL,从而有针对性的进行优化。
(3)profile详情
show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。通过have_profiling参数,能够看到当前MySQL是否支持profile操作:
SELECT @@have_profiling;
可以看到,当前MySQL是支持 profile操作的,但是开关是关闭的。可以通过set语句在session/global级别开启profiling:
SET profiling = 1;
开关已经打开了,接下来,我们所执行的SQL语句,都会被MySQL记录,并记录执行时间消耗到哪儿去了。 我们直接执行如下的SQL语句:
查看指定SQL各个阶段的耗时情况 :
(4)explain
EXPLAIN或者DESC命令获取MySQL如何执行SELECT语句的信息,包括在SELECT语句执行过程中表如何连接和连接的顺序。
语法:
Explain 执行计划中各个字段的含义:
字段 | 含义 |
id | select查询的序列号,表示查询中执行select子句或者是操作表的顺序(id相同,执行顺序从上到下;id不同,值越大,越先执行)。 |
select_type | 表示 SELECT 的类型,常见的取值有 SIMPLE(简单表,即不使用表连接或者子查询)、PRIMARY(主查询,即外层的查询)、UNION(UNION 中的第二个或者后面的查询语句)、SUBQUERY(SELECT/WHERE之后包含了子查询)等 |
type | 表示连接类型,性能由好到差的连接类型为NULL、system、const、eq_ref、ref、range、 index、all 。 |
possible_key | 显示可能应用在这张表上的索引,一个或多个。 |
key | 实际使用的索引,如果为NULL,则没有使用索引。 |
key_len | 表示索引中使用的字节数, 该值为索引字段最大可能长度,并非实际使用长度,在不损失精确性的前提下, 长度越短越好 。 |
rows | MySQL认为必须要执行查询的行数,在innodb引擎的表中,是一个估计值,可能并不总是准确的。 |
filtered | 表示返回结果的行数占需读取行数的百分比, filtered 的值越大越好。 |
6.索引使用
(1)验证索引效率
表中字段建立了索引之后,查询性能会大大提升。建立索引前后,查询耗时都不是一个数量级
(2)最左前缀法则
如果索引了多列(联合索引),要遵守最左前缀法则。最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。如果跳跃某一列,索引将会部分失效(后面的字段索引失效)。
注意 : 最左前缀法则中指的最左边的列,是指在查询时,联合索引的最左边的字段(即是第一个字段)必须存在,与我们编写SQL时,条件编写的先后顺序无关。
(3)范围查询
联合索引中,出现范围查询(>,<),范围查询右侧的列索引失效。
在业务允许的情况下,尽可能的使用类似于 >= 或 <= 这类的范围查询,而避免使用 > 或 <。
(4)索引失效情况
1)索引列运算
不要在索引列上进行运算操作, 索引将失效。
例如:
A. 当根据phone字段进行等值匹配查询时, 索引生效。
B. 当根据phone字段进行函数运算操作之后,索引失效。
2)字符串不加引号
字符串类型字段使用时,不加引号,索引将失效。
注:如果字符串不加单引号,对于查询结果,没什么影响,但是数据库存在隐式类型转换,索引将失效。
3)模糊查询
如果仅仅是尾部模糊匹配,索引不会失效。如果是头部模糊匹配,索引失效。
注:在like模糊查询中,在关键字后面加%,索引可以生效。而如果在关键字前面加了%,索引将会失效。
4)or连接条件
用or分割开的条件, 如果or前的条件中的列有索引,而后面的列中没有索引,那么涉及的索引都不会被用到。
注:当or连接的条件,左右两侧字段都有索引时,索引才会生效。
5)数据分布影响
如果MySQL评估使用索引比全表更慢,则不使用索引。
相同的SQL查询语句,传入的字段值不同时,最终的执行计划结果也可能不一样,这是因为:
MySQL在查询时,会评估使用索引的效率与走全表扫描的效率,如果走全表扫描更快,则放弃索引,走全表扫描。 因为索引是用来索引少量数据的,如果通过索引查询返回大批量的数据,则还不如走全表扫描来的快,此时索引就会失效。is null 、is not null是否走索引,得具体情况具体分析,也不是固定的。
(5)SQL提示
SQL提示,是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
1)use index:建议MySQL使用哪一个索引完成此次查询(仅仅是建议,mysql内部还会再次进行评估)。
explain select * from tb_user use index(idx_user_pro) where profession = '软件工程';
2)ignore index:忽略指定的索引。
explain select * from tb_user ignore index(idx_user_pro) where profession = '软件工程';
3)force index:强制使用索引。
explain select * from tb_user force index(idx_user_pro) where profession = '软件工程';
(6)覆盖索引
覆盖索引是指查询使用了索引,并且需要返回的列,在该索引中已经全部能够找到 。尽量使用覆盖索引,减少select *。
explain中的Extra字段:
Extra | 含义 |
Using where; Using Index | 查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询数据 |
Using index condition | 查找使用了索引,但是需要回表查询数据 |
- 如果在聚集索引中直接能找到对应的行,则直接返回行数据,只需要一次查询,哪怕是select *;
- 如果在辅助索引中找聚集索引,如select id, name from xxx where name='xxx';,也只需要通过辅助索引(name)查找到对应的id,返回name和name索引对应的id即可,只需要一次查询;
- 如果是通过辅助索引查找其他字段,则需要回表查询,如select id, name, gender from xxx where name='xxx';
- 所以尽量不要用select *,容易出现回表查询,降低效率,除非有联合索引包含了所有字段
面试题:一张表,有四个字段(id, username, password, status),由于数据量大,需要对以下SQL语句进行优化,该如何进行才是最优方案: select id, username, password from tb_user where username='itcast';
解:给username和password字段建立联合索引,则不需要回表查询,直接覆盖索引
(7)前缀索引
当字段类型为字符串(varchar,text,longtext等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO, 影响查询效率。此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
1)语法
create index idx_xxxx on table_name(column(n)) ;
例如:为tb_user表的email字段,建立长度为5的前缀索引。
create index idx_email_5 on tb_user(email(5));
2)前缀长度
可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高, 唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
3)前缀索引的查询流程
(8)单列索引与联合索引
单列索引:即一个索引只包含单个列。
联合索引:即一个索引包含了多个列。
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
如果查询使用的是联合索引,具体的结构示意图如下:
7.索引设计原则
1. 针对于数据量较大,且查询比较频繁的表建立索引
2. 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引
3. 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高
4. 如果是字符串类型的字段,字段长度较长,可以针对于字段的特点,建立前缀索引
5. 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率
6. 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价就越大,会影响增删改的效率
7. 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询