学习内容
吴恩达《machine learning》
学习目录
一、 引言
1.1 欢迎
1.2 机器学习是什么?
1.3 监督学习
1.4 无监督学习
二、单变量线性回归
2.1 模型表示
2.2 代价函数
2.3 代价函数的直观理解I
2.4 代价函数的直观理解II
2.5 梯度下降
2.6 梯度下降的直观理解
2.7 梯度下降的线性回归
2.8 接下来的内容
三、线性代数回顾
3.1 矩阵和向量
3.2 加法和标量乘法
3.3 矩阵向量乘法
3.4 矩阵乘法
3.5 矩阵乘法的性质
3.6 逆、转置
四、多变量线性回归
4.1 多维特征
4.2 多变量梯度下降
4.3 梯度下降法实践1-特征缩放
4.4 梯度下降法实践2-学习率
4.5 特征和多项式回归
4.6 正规方程
4.7 正规方程及不可逆性(选修)
五、Octave教程(Octave Tutorial)
5.1 基本操作
5.2 移动数据
5.3 计算数据
5.4 绘图数据
5.5 控制语句:for,while,if语句
5.6 向量化 88
5.7 工作和提交的编程练习
六、逻辑回归
6.1 分类问题
6.2 假说表示
6.3 判定边界
6.4 代价函数
6.5 简化的成本函数和梯度下降
6.6 高级优化
6.7 多类别分类:一对多
七、正则化
7.1 过拟合的问题
7.2 代价函数
7.3 正则化线性回归
7.4 正则化的逻辑回归模型
第八、神经网络:表述
8.1 非线性假设
8.2 神经元和大脑
8.3 模型表示1
8.4 模型表示2
8.5 样本和直观理解1
8.6 样本和直观理解II
8.7 多类分类