Bootstrap

利用matlab实现非线性拟合(三维、高维、参数方程)

2021.06 更新。补充了非线性拟合中,关于最小二乘定义的问题,放在了最后一章。
2021.12更新。应评论区建议,补充了3.3章绘图用的代码。

本文首发于 matlab爱好者 微信公众号,欢迎关注。

惯例声明:本人没有相关的工程应用经验,只是纯粹对相关算法感兴趣才写此博客。所以如果有错误,欢迎在评论区指正,不胜感激。本文主要关注于算法的实现,对于实际应用等问题本人没有任何经验,所以也不再涉及。

本人在学习matlab匿名函数时,作为练习有感而发,写下下面内容,非专业,难免有误。
在这里插入图片描述

0 前言

一般而言,通过已有的数据点去推导其它数据点,常见的方法有插值和拟合。插值适用性较广,尤其是线性插值或样条插值已被广泛的应用。但是通过已知的函数去拟合数据,是连接理论与实验重要的桥梁,这一点是插值无法替代的。

日常学习工作中,经常会遇到下面这种问题:想要用某个具体函数去拟合自己的数据,明明知道这个函数的具体形式,却不知道其中的参数怎么选取。本文就简单介绍一下matlab环境下,如何进行非线性拟合。

1 线性拟合

1.1 多项式拟合

多项式拟合就是利用下面形式的方程去拟合数据:
y = a + b x + c x 2 + d x 3 + . . . y=a +bx+cx^2+dx^3+... y=a+bx+cx2+dx3+...
matlab中可以用polyfit()函数进行多项式拟合。下面举一个小例子:

对于已有的数据点,我们采用4阶多项式拟合。其中已知函数的的表达式为

y=0.03 x^4 - 0.5 x^3 + 2 x^2 - 4

在此基础上添加了一些噪声点。拟合曲线依然采用4阶进行拟合,结果如下。

在这里插入图片描述
可以看到拟合曲线与理论曲线基本一致,说明这种方法能够较好的拟合出原始数据的趋势。源代码如下:

x=0:0.5:10;
y=0.03*x.^4-0.5*x.^3+2.0*x.^2-0*x-4+6*(rand(size(x))-0.5);
p=polyfit(x,y,4);
x2=0:0.05:10;
y2=polyval(p,x2);
figure();
subplot(1,2,1)
hold on
plot(x,y,'linewidth',1.5,'MarkerSize',15,'Marker','.','color','k')
plot(x,0.03*x.^4-0.5*x.^3+2.0*x.^2-0*x-4,'linewidth',1,'color','b')
hold off
legend('原始数据点','理论曲线','Location','southoutside','Orientation','horizontal')
legend('boxoff')
box on
subplot(1,2,2)
hold on
plot(x2,y2,'-','linewidth',1.5,'color','r')
plot(x,y,'LineStyle','none','MarkerSize',15,'Marker','.','color','k')
hold off
box on
legend('拟合曲线','数据点','Location','southoutside','Orientation','horizontal')
legend('boxoff')

对于多项式拟合,不是阶数越多越好。比如还是这个上面这个例子,阶数越多,曲线越能够穿过每一个点,但是曲线的形状与理论曲线偏离越大。所以选择最适合的才是最好的。
在这里插入图片描述

1.2 线性拟合

线性拟合就是能够把拟合函数写成下面这种形式的:
y = p 1 f 1 ( x ) + p 2 f 2 ( x ) + p 3 f 3 ( x ) + . . . y=p_1 f_1(x) +p_2 f_2(x)+p_3 f_{3}(x)+... y=p1f1(x)+p2f2(x)+p3f3(x)+...

其中f(x)是关于x的函数,其表达式是已知的。p是常数系数,这个是未知的。

对于这种形式的拟合,matlab内部有一个及其强悍的函数,可以自动输出p的解,并且满足最小二乘。这个函数就是\。没错,就是斜杠。这个符号通常用于求解方程AX=B的情况,我们用X=A\B可以求出未知数X。我们利用当A行和列不等时,输出X的最小二乘这个特性,就可以求出相应的最佳拟合。

还是举个例子

在这里插入图片描述
虽然看上去很非线性,但是x和y都是已知的,a、b、c是未知的,而且是线性的,所以可以被非常简单的拟合出来。假设a=2.5,b=0.5,c=-1,加入随机扰动。拟合的最终效果为:

在这里插入图片描述
最终得到的拟合参数为:a=2.47,b=0.47,c=-0.66。考虑到随机噪声的影响,与原始数据相差不大,源代码如下:

%线性拟合
x=0:0.5:10;
a=2.5;
b=0.5;
c=-1;
%原函数
y=a*sin(0.2*x.^2+x)+b*sqrt(x+1)+c+0.5*rand(size(x));

%拟合部分
yn1=sin(0.2*x.^2+x);
yn2=sqrt(x+1);
yn3=ones(size(x));
X=[yn1;yn2;yn3];
%拟合,得到系数
Pn=X'\y';
yn=Pn(1)*yn1+Pn(2)*yn2+Pn(3)*yn3;

%绘图
figure()
subplot(1,2,1)
plot(x,y,'linewidth',1.5,'MarkerSize',15,'Marker','.','color','k')
legend('原始数据点','Location','southoutside','Orientation','horizontal')
legend('boxoff')
subplot(1,2,2)
hold on
x2=0:0.01:10;
plot(x2,Pn(1)*sin(0.2*x2.^2+x2)+Pn(2)*sqrt(x2+1)+Pn(3),'-','linewidth',1.5,'color','r')
plot(x,y,'LineStyle','none','MarkerSize',15,'Marker','.','color','k')
hold off
box on
legend('拟合曲线','数据点','Location','southoutside','Orientation','horizontal')
legend('boxoff')

事实上,其实常用的拟合方式中,有很多都是线性拟合,比如多项式拟合,傅里叶拟合等。对于多项式拟合,只需要把拟合的部分替换成x,x.^2,x.^3这种形式。对于傅里叶级数,只需要把拟合的部分替换为sin(x),sin(2*x),sin(3*x)这种形式就行。

下面展示一个利用线性拟合,进行不同频率的三角波级数拟合正弦函数的例子:
在这里插入图片描述

clear;
clc;
close all
t=0:0.001:2*pi;%原函数
YS=sin(t);%基函数
N=21;
Yo=[];
for k=1:N
    Yn=sawtooth(k*(t+pi/2),0.5);
    Yo=[Yo,Yn'];
end
YS=YS';%拟合
a = Yo\YS;
%绘图
figure()
for k=1:N
    clf
    plot(t,Yo(:,1:k)*a(1:k,:),t,YS,'LineWidth',1)
    ylim([-1.3,1.3])
    xlim([0,6.3])
    pause(0.1)
end

2 一维非线性拟合

2.1 简单的非线性拟合

前面介绍了线性的拟合方法。如果一个非线性方程,可以化为上面线性方程中公式中给出的样子,那么我们也可以套用线性的方法去求解。

比如下面的方程:
y = a ∗ exp ⁡ ( − b x ) y=a*\exp(-bx) y=aexp(bx)
经过取对数变换,可以变为下面等效的线性形式:
lg ⁡ ( y ) = lg ⁡ ( a ) + b ∗ ( − x ) \lg(y)=\lg(a)+b*(-x) lg(y)

;