# 19/07/14 - Classifier exampleimport numpy as np
np.random.seed(1337)# for reproducibilityfrom keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop
# download the mnist to the path '~/.keras/datasets/' if it is the first time to be called# X_train.shape (60000,28,28), y_train.shape (60000, )(X_train, y_train),(X_test, y_test)= mnist.load_data()# data pre-processing
X_train = X_train.reshape(X_train.shape[0],-1)/255.# normalize
X_test = X_test.reshape(X_test.shape[0],-1)/255.# normalize
y_train = np_utils.to_categorical(y_train, num_classes=10)
y_test = np_utils.to_categorical(y_test, num_classes=10)# Another way to build your neural net
model = Sequential([
Dense(32, input_dim=784),
Activation('relu'),
Dense(10),
Activation('softmax'),])# Another way to define your optimizer
rmsprop = RMSprop(lr=0.001, rho=0.9, epsilon=1e-08, decay=0.0)# We add metrics to get more results you want to see
model.compile(optimizer=rmsprop,
loss='categorical_crossentropy',
metrics=['accuracy'])print('Training ------------')# Another way to train the model
model.fit(X_train, y_train, epochs=2, batch_size=32)print('\nTesting ------------')# Evaluate the model with the metrics we defined earlier
loss, accuracy = model.evaluate(X_test, y_test)print('test loss: ', loss)print('test accuracy: ', accuracy)
1.导入模块和数据
import numpy as np
np.random.seed(1337)# for reproducibilityfrom keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense, Activation
from keras.optimizers import RMSprop
# download the mnist to the path '~/.keras/datasets/' if it is the first time to be called