一、概述
监控作为运维中一个重要环节,可以减少不必要运维工作,更好的维护客户资源,这里采用:
Prometheus
(普罗米修斯):作为主要存储提取数据工具
Grafana
:用于数据页面的展示
node_exporter
:linux服务器性能采集器,
blockbox
:web页面状态监控
cadvisor
:容器数据的监控采集
alertmanager
:发送告警信息
dingtalk
:发送到钉钉告警群,使用webhook
以下是linux服务器监控、web页面监控、docker容器监控、windows服务器监控
二、目录结构
三、准备工作
3.1 新建目录
#新建本地目录
mkdir -p /opt/prom/{prometheus/data,prometheus/conf,blackbox_exporter/config,alertmanager,grafana,dingtalk}
#授权目录
chmod 777 /opt/prom/{prometheus/data,prometheus/conf,blackbox_exporter/config,alertmanager,grafana,dingtalk}
3.2 拷贝对应yml文件到各自文件夹
3.3 执行docker-compose up -d拉取镜像启动
四、文件
docker-compose.yml
version: '3.3'
services:
node-exporter:
image: prom/node-exporter:latest
ports:
- "9100:9100" #node-exporter默认端口9100,不过由于metersphere的node-exporter已经占用了9100了,这里调整为9101
networks:
- prom
dingtalk:
image: timonwong/prometheus-webhook-dingtalk:latest
volumes:
- type: bind
source: ./dingtalk
target: /etc/prometheus-webhook-dingtalk
read_only: true
ports:
- "8060:8060"
networks:
- prom
alertmanager:
depends_on:
- dingtalk
image: prom/alertmanager:latest
volumes:
- type: bind
source: ./alertmanager/
target: /etc/alertmanager/
read_only: true
ports:
- "9093:9093"
networks:
- prom
blackbox-exporter:
image: prom/blackbox-exporter:master
volumes:
- type: bind
source: ./blackbox_exporter/config/
target: /etc/blackbox_exporter/
read_only: true
ports:
- '9115:9115'
networks:
- prom
cadvisor:
image: 'registry.cn-beijing.aliyuncs.com/luohuiwen20/cadvisor:v0.47.0'
devices:
- /dev/kmsg
privileged: true
ports:
- '8089:8080'
volumes:
- '/dev/disk/:/dev/disk:ro'
- '/var/lib/docker/:/var/lib/docker:ro'
- '/sys:/sys:ro'
- '/var/run:/var/run:ro'
- '/:/rootfs:ro'
networks:
- prom
prometheus:
depends_on:
- alertmanager
image: prom/prometheus:latest
volumes:
- type: bind
source: ./prometheus/conf
target: /etc/prometheus/
read_only: true
- type: volume
source: prometheus
target: /prometheus
ports:
- "9200:9090" #prometheus默认端口9090,不过ms-prometheus占用该端口,这里换成9200
networks:
- prom
grafana:
depends_on:
- prometheus
image: grafana/grafana:latest
volumes:
- type: volume
source: grafana
target: /var/lib/grafana
ports:
- "3000:3000"
networks:
- prom
volumes:
prometheus:
driver: local
driver_opts:
type: none
o: bind
device: /opt/prom/prometheus/data
grafana:
driver: local
driver_opts:
type: none
o: bind
device: /opt/prom/grafana
networks:
prom:
driver: bridge
prometheus.yml
global:
scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.
evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.
# scrape_timeout is set to the global default (10s).
# Alertmanager configuration
alerting:
alertmanagers:
- static_configs:
- targets: [ 'localhost:9093' ]
# Load rules once and periodically evaluate them according to the global 'evaluation_interval'.
rule_files:
- "/etc/prometheus/rules.yml"
- "/etc/prometheus/webrules.yml"
- "/etc/prometheus/node_rules.yml"
# - "first_rules.yml"
# - "second_rules.yml"
# A scrape configuration containing exactly one endpoint to scrape:
# Here it's Prometheus itself.
scrape_configs:
# The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.
- job_name: 'prometheus'
static_configs:
- targets: [ 'localhost:9100' ] #node_expoert地址
labels:
instance: prometheus
- job_name: 'http_status' # 配置job名
metrics_path: /probe # 定义metric获取的路径
params:
module: [http_status] # 这里就是我们在black_exporter中定义的模块名
file_sd_configs: # 因需要监控的地址很多,我们这里将所有地址独立出来,后面会介绍该文件
- files:
- '/etc/prometheus/job_web.yml'
refresh_interval: 30s # 30秒刷新一次,当有新的监控地址时,会自动加载进来不需要重启
relabel_configs:
- source_labels: [__address__] # 当前target的访问地址,比如监控百度则为 https://baidu.com
target_label: __param_target # __param是默认参数前缀,target为参数,这里可以理解为把__address__ 的值赋给__param_target,若监控百度,则target=https://baidu.com
- source_labels: [__param_target]
target_label: instance # 可以理解为把__param_target的值赋给instance标签
- target_label: __address__
replacement: 172.20.239.123:9115 # web监控原本的target为站点的地址,但Prometheus不是直接去请求该地址,而是去请求black_exporter,故需要把目标地址替换为black_exporter的地址
- job_name: containers
scrape_interval: 5s
static_configs:
- targets: [ 'localhost:8089' ]
config.yml
dingtalk配置文件
## Request timeout
# timeout: 5s
## Uncomment following line in order to write template from scratch (be careful!)
#no_builtin_template: true
## Customizable templates path
templates:
- /opt/prom/templates/templates.tmpl #模版文件
## You can also override default template using `default_message`
## The following example to use the 'legacy' template from v0.3.0
#default_message:
# title: '{{ template "legacy.title" . }}'
# text: '{{ template "legacy.content" . }}'
## Targets, previously was known as "profiles"
targets:
webhook1:
url: https://oapi.dingtalk.com/robot/send?access_token=xxxxxxxxxxx
# secret for signature
secret: xxxxxxxxxxxxxxxxxxxxxxxxxxxx
message:
# Use legacy template
text: '{{ template "dingding.to.message" . }}'
alertmanager.yml
global:
resolve_timeout: 5m
route: # 告警路由配置,定义如何处理和发送告警
receiver: webhook
group_wait: 30s
group_interval: 1m
repeat_interval: 4h
group_by: [alertname]
routes:
- receiver: webhook
group_wait: 10s
receivers: # 告警接收者配置,定义如何处理和发送告警
- name: webhook
webhook_configs:
- url: http://localhost:8060/dingtalk/webhook1/send # 告警 Webhook URL
send_resolved: true # 是否发送已解决的告警。如果设置为 true,则在告警解决时发送通知
config.yml
blockbox配置文件
modules:
http_status: # 给模块取名,后面在Prometheus的配置文件中会用到该名称
prober: http # 探针类型,探针有多种类型如http、tcp、icmp、dns,不同的探针具有不同的功能
timeout: 5s # 探针检测超时时间
http:
valid_status_codes: [] # 有效的状态码,默认为200,也可以自己定义,比如你的站点304也可能是正常的
method: GET # http使用get请求
fail_if_body_not_matches_regexp: [] # 对返回结果进行正则匹配,如果未匹配成功则认为失败
tls_config:
insecure_skip_verify: true # 不安全的https跳过确认,如某些证书不合法或者过期,如果你在浏览器访问,那浏览器会让你确认是否继续,这里也是类似的意思。
job_web.yml
blockbox访问地址,配置在prometheus.yml里面
---
- targets:
- https://baidu.com
labels:
env: baidu
app: web
project: 百度
desc: 百度一下
- targets:
- https://blog.henryplus.cn/
labels:
env: bolg
app: web
project: henry博客
desc: henry博客欢迎访问
告警文件
rules.yml
linux
groups:
- name: 实例存活告警规则
rules:
- alert: 实例存活告警
expr: up == 0
for: 1m
labels:
user: prometheus
severity: '严重'
annotations:
description: "[报警]:服务器无法访问或数据采集器无法访问。\n>服务器名称:{{ $labels.instance }} \n \n >服务器地址:{{ $labels.ip }}"
- alert: 磁盘使用率告警
expr: (node_filesystem_size_bytes - node_filesystem_avail_bytes) / node_filesystem_size_bytes * 100 > 90
for: 1m
labels:
user: prometheus
severity: '警告'
annotations:
description: "[报警]:Linux服务器分区使用率超过90%!(挂载点: {{ $labels.mountpoint }} 当前值: {{ $value }}%)\n>服务器名称:{{ $labels.name }} \n \n >服务器地址:{{ $labels.instance }}"
- alert: CPU使用率告警
expr: 100 - (avg by (instance)(irate(node_cpu_seconds_total{mode="idle"}[1m]) )) * 100 > 90
for: 1m
labels:
user: prometheus
severity: '警告'
annotations:
description: "[报警]:Linux服务器CPU使用超过90%!(当前值: {{ $value }}%)\n>服务器名称:{{ $labels.name }} \n \n >服务器地址:{{ $labels.instance }}"
- alert: 内存使用率告警
expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes+node_memory_Buffers_bytes+node_memory_Cached_bytes )) / node_memory_MemTotal_bytes * 100 > 90
for: 1m
labels:
user: prometheus
severity: '警告'
annotations:
description: "[报警]:Linux服务器内存使用率超过90%!(当前值: {{ $value }}%)\n>服务器名称:{{ $labels.name }} \n \n >服务器地址:{{ $labels.instance }}"
- alert: Windows服务状态
expr: windows_service_status{status="ok",exported_name!="tcpiddaservice"} != 1
for: 1m
labels:
severity: '严重'
annotations:
description: "[报警]: Windows服务状态不正常\n>服务器名称:{{ $labels.name }}\n>服务器地址:{{ $labels.instance }} \n \n >Windows服务名称:{{ $labels.exported_name}}"
- alert: Windows服务器磁盘使用率
expr: 100.0 - 100 * ((windows_logical_disk_free_bytes / 1024 / 1024 ) / (windows_logical_disk_size_bytes / 1024 / 1024)) > 90
for: 2m
labels:
severity: '警告'
annotations:
description: "[报警]: Windows服务器磁盘使用超过90%!(盘符:{{ $labels.volume }} 当前值:{{ $value }}%)\n>服务器名称:{{ $labels.name }} \n \n >服务器地址:{{ $labels.instance }}"
- alert: Windows服务器CPU使用率
expr: 100 - (avg by (instance) (rate(windows_cpu_time_total{mode="idle"}[2m])) * 100) > 90
for: 0m
labels:
severity: '警告'
annotations:
description: "[报警]: Windows服务器CPU使用率超过90%!(当前值:{{ $value }}%)\n>服务器名称:{{ $labels.name }} \n \n >服务器地址:{{ $labels.instance }}"
- alert: Windows服务器内存使用率
expr: 100 - ((windows_os_physical_memory_free_bytes / windows_cs_physical_memory_bytes) * 100) > 90
for: 2m
labels:
severity: '警告'
annotations:
description: "[报警]: Windows内存使用率超过90%!(当前值:{{ $value }}%)\n>服务器名称:{{ $labels.name }} \n \n >服务器地址:{{ $labels.instance }}"
- name: node_usage_record_rules
interval: 1m
rules:
- record: cpu:usage:rate1m
expr: (1 - avg(rate(node_cpu_seconds_total{mode="idle"}[1m])) by (instance,vendor,account,group,name)) * 100
- record: mem:usage:rate1m
expr: (1 - node_memory_MemAvailable_bytes / node_memory_MemTotal_bytes) * 100
webrules.yml
groups:
- name: Domain
rules:
- alert: 站点可用性
expr: probe_success == 0
for: 1m
labels:
alertype: domain
severity: '严重'
annotations:
description: "[报警]:({{ $labels.project }}){{ $labels.env }}_{{ $labels.name }}:站点无法访问\n>站点URL地址:{{ $labels.instance }}"
- alert: 站点状态异常
expr: (probe_success == 0 and probe_http_status_code > 499) or probe_http_status_code == 0
for: 1m
labels:
alertype: domain
severity: '警告'
annotations:
description: "[报警]:({{ $labels.project }}){{ $labels.env }}_{{ $labels.name }}:站点状态异常:{{ $value }}\n>站点URL地址:{{ $labels.instance }}"
- alert: 站点耗时过高
expr: probe_duration_seconds > 0.5
for: 2m
labels:
alertype: domain
severity: '警告'
annotations:
description: "[报警]:({{ $labels.project }}){{ $labels.env }}_{{ $labels.name }}:当前站点耗时:{{ $value | humanize }}s\n>站点URL地址:{{ $labels.instance }}"
node_rules.yml
groups:
- name: containerDown
rules:
- alert: 容器异常
expr: container_tasks_state{name="nginx",state="running"} != 0
for: 10s
labels:
user: root
severity: erroring
annotations:
summary: "服务名:{{ $labels.alertname }}"
description: "容器: {{ $labels.name }} 异常停止"
模版文件
templates.tmpl
{{ define "dingding.to.message" }}
{{- if gt (len .Alerts.Firing) 0 -}}
{{- range $index, $alert := .Alerts -}}
========= **监控告警** =========
**告警类型:** {{ $alert.Labels.alertname }}
**告警级别:** {{ $alert.Labels.severity }} 级
**故障主机:** {{ $alert.Labels.instance }} {{ $alert.Labels.device }}
**告警详情:** {{ $alert.Annotations.message }}{{ $alert.Annotations.description}}
**故障时间:** {{ ($alert.StartsAt.Add 28800e9).Format "2006-01-02 15:04:05" }}
========= = end = =========
{{- end }}
{{- end }}
{{- if gt (len .Alerts.Resolved) 0 -}}
{{- range $index, $alert := .Alerts -}}
========= 告警恢复 =========
**告警主机:** {{ .Labels.instance }}
**告警类型:** {{ .Labels.alertname }}
**告警级别:** {{ $alert.Labels.severity }} 级
**告警详情:** {{ $alert.Annotations.message }}{{ $alert.Annotations.description}}
**故障时间:** {{ ($alert.StartsAt.Add 28800e9).Format "2006-01-02 15:04:05" }}
**恢复时间:** {{ ($alert.EndsAt.Add 28800e9).Format "2006-01-02 15:04:05" }}
========= = **end** = =========
{{- end }}
{{- end }}
{{- end }}
五、调试
5.1 调试步骤
5.1.1创建对应目录,拷贝对应配置文件到各自文件夹
5.1.2 修改配置文件
新建钉钉监控群,新建自定义机器人,获取access_token
修改prometheus.yml里面监控地址,引入文件路径等配置。
docker-compose up -d启动项目
5.1.3 Grafana配置
新建数据源,类型选择prometheus
5.1.4 Grafana常用监控模版
windows监控Dashboard:10467
web监控Dashboard:9965
docker监控Dashboard:14282
linux监控图表Dashboard:1860
Linux监控Dashboard:8919
5.2 钉钉不发送告警排查
-
检查钉钉
access_token
是不是正确,服务器能不能访问钉钉接口 -
检查prometheus页面alerts是不是有告警信息
-
检查altermanager页面有没有发送信息弹出
5.3 windows_exporter安装
修改下面windows_exporter.exe路径,执行该命令,生成services服务,方便管理
sc create windows_exporter binpath= "C:\soft\winodws_exporter\windows_exporter-0.25.1-amd64.exe" type=own start=auto displayname= windows_exporter
六、总结
整体流程的核心在于prometheus
,其他作为采集器的node_exporter、blockbox、cadvisor
都需要在prometheus
配置文件里面配置,dingtalk+alertmanager
这两个是结合起来用的,dintalk
配置文件配置钉钉机器人access_token
的地址与密钥,altermanager
配置dingtalk
的访问地址,Grafana
里面新建prometheus
的数据源即可,import
导入对应dashboard
展示数据即可。