公式
- Support 反映了特定变量组合在数据集中出现的频率。例如,如果特定变量 "A "在 30% 的实例中出现,则其支持度为 0.3:
support (Value a) =(number of transactions containing Value a) / (total number of transactions)
- Confidence 衡量的是当一种情况(结果)出现时,另一种情况(前因)出现的可能性。如果 "A "之后经常出现 “B”,那么 "A => B "这一规则的可信度就很高。
confidence (Value a ➞ Value b) =(support (Value a ∪Value b)) / (support (Value a))
- Lift 通过比较观察到的 "A "和 "B "同时出现的频率与如果它们独立出现的预期频率,来评估关联的强度。提升值大于 1 表示有意义的关联,有正负区别:
Lift(A⇒B)=(Support(A∩