prim 算法精讲
题目链接/文章讲解:代码随想录
import java.util.*;
public class Main {
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
// 读取顶点数和边数
int vertexCount = scanner.nextInt();
int edgeCount = scanner.nextInt();
// 初始化邻接矩阵,所有值初始化为一个大值,表示无穷大
int[][] adjacencyMatrix = new int[vertexCount + 1][vertexCount + 1];
for (int i = 0; i <= vertexCount; i++) {
Arrays.fill(adjacencyMatrix[i], Integer.MAX_VALUE);
}
// 读取边的信息并填充邻接矩阵
for (int i = 0; i < edgeCount; i++) {
int startVertex = scanner.nextInt();
int endVertex = scanner.nextInt();
int weight = scanner.nextInt();
adjacencyMatrix[startVertex][endVertex] = weight;
adjacencyMatrix[endVertex][startVertex] = weight; // 无向图
}
// 距离数组,记录每个节点到生成树的最小距离
int[] minimumDistances = new int[vertexCount + 1];
Arrays.fill(minimumDistances, Integer.MAX_VALUE);
// 记录节点是否在生成树中
boolean[] isInMST = new boolean[vertexCount + 1];
// Prim算法主循环
minimumDistances[1] = 0; // 从第一个节点开始
for (int i = 1; i < vertexCount; i++) {
int closestVertex = -1;
int smallestDistance = Integer.MAX_VALUE;
// 选择距离生成树最近的节点
for (int j = 1; j <= vertexCount; j++) {
if (!isInMST[j] && minimumDistances[j] < smallestDistance) {
smallestDistance = minimumDistances[j];
closestVertex = j;
}
}
// 将最近的节点加入生成树
isInMST[closestVertex] = true;
// 更新非生成树节点到生成树的距离
for (int j = 1; j <= vertexCount; j++) {
if (!isInMST[j] && adjacencyMatrix[closestVertex][j] < minimumDistances[j]) {
minimumDistances[j] = adjacencyMatrix[closestVertex][j];
}
}
}
// 统计生成树的总权重
int totalWeight = 0;
for (int i = 2; i <= vertexCount; i++) {
totalWeight += minimumDistances[i];
}
// 输出结果
System.out.println(totalWeight);
scanner.close();
}
}
kruskal 算法精讲
题目链接/文章讲解:代码随想录
import java.util.*;
class Edge {
int vertex1, vertex2, weight;
// Edge构造函数,初始化边的两个顶点和权重
Edge(int vertex1, int vertex2, int weight) {
this.vertex1 = vertex1;
this.vertex2 = vertex2;
this.weight = weight;
}
}
public class Main {
private static final int MAX_NODES = 10001; // 最大节点数
private static int[] parent = new int[MAX_NODES]; // 存储每个节点的父节点
// 初始化并查集
public static void initializeUnionFind() {
for (int i = 0; i < MAX_NODES; i++) {
parent[i] = i; // 每个节点的父节点初始化为自身
}
}
// 查找操作,寻找节点的根节点
public static int find(int node) {
if (node == parent[node]) {
return node; // 如果节点是根节点,直接返回
}
// 路径压缩,优化查找效率
return parent[node] = find(parent[node]);
}
// 合并两个集合
public static void union(int node1, int node2) {
int root1 = find(node1);
int root2 = find(node2);
if (root1 != root2) {
parent[root2] = root1; // 将一个集合的根节点指向另一个集合的根节点
}
}
public static void main(String[] args) {
Scanner scanner = new Scanner(System.in);
int vertexCount = scanner.nextInt(); // 顶点数量
int edgeCount = scanner.nextInt(); // 边的数量
List<Edge> edgeList = new ArrayList<>(); // 存储所有边
int totalWeight = 0; // 最小生成树的权重总和
// 读取边的信息
for (int i = 0; i < edgeCount; i++) {
int vertex1 = scanner.nextInt();
int vertex2 = scanner.nextInt();
int weight = scanner.nextInt();
edgeList.add(new Edge(vertex1, vertex2, weight)); // 添加边到边列表
}
// 按照边的权重进行排序
edgeList.sort(Comparator.comparingInt(edge -> edge.weight));
// 初始化并查集
initializeUnionFind();
// 遍历所有边,执行Kruskal算法
for (Edge edge : edgeList) {
int root1 = find(edge.vertex1);
int root2 = find(edge.vertex2);
// 如果两个顶点的根节点不同,说明它们不在同一个集合
if (root1 != root2) {
totalWeight += edge.weight; // 加入当前边的权重
union(root1, root2); // 合并两个集合
}
}
// 输出最小生成树的权重总和
System.out.println(totalWeight);
scanner.close(); // 关闭扫描器
}
}