简介
随机森林是 Bagging 的一种扩展变体。该算法由于实现简单,抗噪声能力强,不容易发生过拟合现象,因此在很多业务中被广泛应用。
本实训项目的主要内容是基于 python 语言搭建出随机森林模型,并使用 sklearn 实现手写数字识别。
Bagging
import numpy as np
from sklearn.tree import DecisionTreeClassifier
class BaggingClassifier(object):
def __init__(self, n_model=10):
'''
初始化函数
'''
# 分类器的数量,默认为10
self.n_model = n_model
# 用于保存模型的列表,训练好分类器后将对象append进去即可
self.models = []
def fit(self, feature, label):
'''
训练模型,请记得将模型保存至self.models
:param feature: 训练集数据,类型为ndarray
:param label: 训练集标签,类型为ndarray
:return: None
'''
self.models = [DecisionTreeClassifier(max_depth=3).fit(feature, label) for _ in range(self.n_model)]
def predict(self, feature):
'''
:param feature: 测试集数据,类型为ndarray
:return: 预测结果,类型为ndarray,如np.array([0, 1, 2, 2, 1, 0])
'''
tmp_arr = np.transpose([clf_.predict(feature) for clf_ in self.models])
predict = []
for row in tmp_arr:
dic = {}
for item in row:
if item not in dic.keys():
dic[item] = 1
else:
dic[item] += 1
predict.append(list(max(dic.items(), key=lambda d: d[1]))[0])
return predict
随机森林算法流程
import random
import numpy as np
# 建议代码,也算是Begin-End中的一部分
from sklearn.tree import DecisionTreeClassifier
class RandomForestClassifier():
def __init__(self, n_model=10):
'''
初始化函数
'''
# 分类器的数量,默认为10
self.n_model = n_model
# 用于保存模型的列表,训练好分类器后将对象append进去即可
self.models = []
# 用于保存决策树训练时随机选取的列的索引
self.col_indexs = []
self.feature_k = 3
def fit(self, feature, label):
"""
训练模型
:param feature: 训练集数据,类型为ndarray
:param label: 训练集标签,类型为ndarray
:return: None
"""
def random_sampling(X, y):
"""
自助采样
:param X:
:param y:
:return: 自助采样之后的结果
"""
m, n = np.shape(X)
# 有放回抽取
row_indexes = [random.randint(0, m - 1) for _ in range(m)]
# 选取随机k个特征
col_indexes = random.sample(range(n), self.feature_k)
X_res = [[X[index][col] for col in col_indexes] for index in row_indexes]
y_res = [y[index] for index in row_indexes]
return X_res, y_res, col_indexes
for i in range(self.n_model):
X, y, cols = random_sampling(feature, label)
self.col_indexs.append(cols)
self.models.append(DecisionTreeClassifier(max_depth=4).fit(X, y))
def predict(self, feature):
'''
:param feature:测试集数据,类型为ndarray
:return:预测结果,类型为ndarray,如np.array([0, 1, 2, 2, 1, 0])
'''
# ************* Begin ************#
tmp_arr = np.transpose(
[clf.predict(np.array(feature[:, self.col_indexs[i]])) for i, clf in enumerate(self.models)])
predict = []
for row in tmp_arr:
di = {}
for item in row:
if item not in di.keys():
di[item] = 1
else:
di[item] += 1
predict.append(list(max(di.items(), key=lambda d: d[1]))[0])
return predict
# ************* End **************#
手写数字识别
from sklearn.ensemble import RandomForestClassifier
import numpy as np
import sklearn.datasets as db
def digit_predict(train_image, train_label, test_image):
"""
实现功能:训练模型并输出预测结果
:param train_image: 包含多条训练样本的样本集,类型为ndarray,shape为[-1, 8, 8]
:param train_label: 包含多条训练样本标签的标签集,类型为ndarray
:param test_image: 包含多条测试样本的测试集,类型为ndarry
:return: test_image对应的预测标签,类型为ndarray
"""
X = np.reshape(train_image, newshape=(-1, 64))
clf = RandomForestClassifier(n_estimators=500, max_depth=10)
clf.fit(X, y=train_label)
return clf.predict(test_image)
data = db.load_digits()
感谢大家的支持!!!!!!!!!!