Bootstrap

python学opencv|读取图像(五十六)使用cv2.GaussianBlur()函数实现图像像素高斯滤波处理

【1】引言

前序学习了均值滤波和中值滤波,对图像的滤波处理有了基础认知,相关文章链接为:

python学opencv|读取图像(五十四)使用cv2.blur()函数实现图像像素均值处理-CSDN博客

python学opencv|读取图像(五十五)使用cv2.medianBlur()函数实现图像像素中值滤波处理-CSDN博客

在此基础上,我们可以进入高斯滤波的学习,此时需要使用cv2.GaussianBlur()函数。

【2】官网教程

点击下方链接,直达cv2.GaussianBlur()函数的官网教程:

OpenCV: Image Filtering

官网页面对cv2.GaussianBlur()函数的说明为:

图1   cv2.GaussianBlur()函数的官网教程

官网页面对cv2.GaussianBlur()函数的参数说明为:

void cv::GaussianBlur  (

InputArray src,                                                                    #输入图像

OutputArray dst,                                                                 #输出图像

Size ksize,                                                                          #像素核

double sigmaX,                                                                #卷积核水平方向标准差,可选参数

double sigmaY = 0,                                                          #卷积核竖直方向标准差,可选参数

int borderType = BORDER_DEFAULT,                           #边界样式,可选参数

AlgorithmHint hint = cv::ALGO_HINT_DEFAULT )         #实现修改标志,无需关注

【3】代码测试

首先是引入模块和相关图像:

import cv2 as cv  # 引入CV模块

# 读取图片
srcm = cv.imread('srcx.png')  # 读取图像srcx.png

然后是对图像进行高斯滤波处理:

#滤波计算
src1 = cv.GaussianBlur(srcm,(3,3),0,0)  # 图像取平均值,像素核大小为(3,3)
src2 = cv.GaussianBlur(srcm,(5,5),0,0)  # 图像取平均值,像素核大小为(5,5)
src3 = cv.GaussianBlur(srcm,(7,7),0,0)  # 图像取平均值,像素核大小为(7,7)

之后显示图像:

# 显示结果
cv.imshow('srcm ', srcm)
cv.imshow('src1 ', src1)
cv.imshow('src2 ', src2)
cv.imshow('src3 ', src3)
cv.imwrite('src1g.png',src1)
cv.imwrite('src2g.png',src2)
cv.imwrite('src3g.png',src3)
# 窗口控制
cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

程序运行使用的相关图像为:

图2  初始图像scrx.png

图3  高斯滤波图像scr1.png

图4  高斯滤波图像scr2.png

图5  高斯滤波图像scr3.png

和调用cv2.blur()函数使用均值滤波处理,调用cv2.medianBlur()函数进行中值滤波处理一样,调用cv.GaussianBlur()函数进行高斯滤波处理后,由图2到图5可见,随着像素核的增大,图像越来越模糊。这提醒我们,控制像素核的大小,可以进一步控制图像的模糊程度。

【4】细节说明

调用cv2.medianBlur()函数进行中值滤波时,使用的像素核只需要写出边长n,但这个边长也应该是奇数,cv2.medianBlur()函数会自动根据这个边长划定一个正方形的像素核。

调用cv2.blur()函数进行均值滤波和调用cv2.GaussianBlur()函数进行高斯滤波处理时,均需要给出(nXn)大小的像素核,这个n应使用奇数。

像素核使用奇数大小会比较好,是因为奇数大小会在最中间围成一个方格,这个方格就是核心方格,滤波计算的值直接赋给这个核心方格。

图6 图像滤波技术对比

【5】总结

掌握了使用python+opencv实现调用cv2.GaussianBlur()函数进行高斯滤波处理图像的技巧。

 

;