1、内存总分
现代的服务器上,内存和CPU都是所谓的NUMA架构,如图7.2所示。
CPU往往不止一颗。通过dmidecode命令可以查看主板上插着的CPU的详细信息。也可以使用cat /proc/cpuinfo命令。
每一个CPU以及和它直连的内存条组成了一个node节点,每个node又会划分成若干个zone(区域)。
通常划分为:
- ZONE_DMA:地址段最低的一块内存区域,供IO设备DMA访问。
- ZONE_DMA32:该zone用于支持32位地址总线的DMA设备,只在64位系统里才有效。
- ZONE_NORMAL:在x86-64架构下,DMA和DMA32之外的内存全部在NORMAL的zone里管理。
- ZONE_HIGHMEM:在32位机器中大于896M的内存属于高端内存。
在每个zone下都包含了许多Page(页面),在Linux下一个页面的大小一般为4KB。
每个zone都有一个伙伴系统进行内存管理分配,free_area是一个包含11个元素的数组,每一个数组分别代表的是空闲可分配连续4KB~4MB的内存链表。伙伴分配系统的内存分配都是以页面进行分配。
内核给内核实际使用中经常使用的对象搞了一个专用的slab内存分配器,这个分配器最大的特点就是,一个slab内只分配特定大小、甚至是特定的对象。这样当一个一个对象释放内存之后,同类对象就可以直接使用这块内存。通过这种方法极大的降低碎片发生的概率,提高内存的利用率。
Linux 内存管理 | 物理内存管理:物理内存、内存碎片、伙伴系统、slab分配器
2、ptmalloc
2.1问题
- Glibc 在什么情况下不会将内存归还给操作系统?
- Glibc 的内存管理方式有哪些约束?适合什么样的内存分配场景?
- Glibc 是如何管理内存的?
2.2 32 位模式下进程默认内存布局
从上图可以看到,栈至顶向下扩展,并且栈是有界的。堆至底向上扩展,mmap 映射区域至顶向下扩展,mmap 映射区域和堆相对扩展,直至耗尽虚拟地址空间中的剩余区域,这种结构便于 C 运行时库使用 mmap 映射区域和堆进行内存分配。上图的布局形式是在内核2.6.7 以后才引入的,这是 32 位模式下进程的默认内存布局形式
2.3 64 位模式下进程内存布局
上图是 X86_64 下 Linux 进程的默认内存布局形式,这只是一个示意图,当前内核默认配置下,进程的栈和 mmap 映射区域并不是从一个固定地址开始,并且每次启动时的值都不一样,这是程序在启动时随机改变这些值的设置,使得使用缓冲区溢出进行攻击更加困难。当然也可以让进程的栈和 mmap 映射区域从一个固定位置开始,只需要设置全局变量randomize_va_space 值 为 0 , 这 个 变 量 默 认 值 为 1 。 用 户 可 以 通 过 设 置/proc/sys/kernel/randomize_va_space 来停用该特性,也可以用如下命令:
sudo sysctl -w kernel.randomize_va_space=0
2.4 操作系统内存分配的相关函数
heap 和 mmap 映射区域是可以提供给用户程序使用的虚拟内存空间,如何获得该区域的内存呢?操作系统提供了相关的系统调用来完成相关工作。对 heap 的操作,操作系统提供了 brk()函数,C 运行时库提供了 sbrk()函数;对 mmap 映射区域的操作,操作系统提供了 mmap()和 munmap()函数。sbrk(),brk() 或者 mmap() 都可以用来向我们的进程添加额外的虚拟内存。Glibc 同样是使用这些函数向操作系统申请虚拟内存。
这里要提到一个很重要的概念,内存的延迟分配,只有在真正访问一个地址的时候才建立这个地址的物理映射,这是 Linux 内存管理的基本思想之一。Linux 内核在用户申请内存的时候,只是给它分配了一个线性区(也就是虚拟内存),并没有分配实际物理内存;只有当用户使用这块内存的时候,内核才会分配具体的物理页面给用户,这时候才占用宝贵的物理内存。内核释放物理页面是通过释放线性区,找到其所对应的物理页面,将其全部释放的过程。
2.5 ptmalloc的设计假设
Ptmalloc 在设计时折中了高效率,高空间利用率,高可用性等设计目标。在其实现代码中,隐藏着内存管理中的一些设计假设,由于某些设计假设,导致了在某些情况下 ptmalloc的行为很诡异。这些设计假设包括:
1. 具有长生命周期的大内存分配使用 mmap。
2. 特别大的内存分配总是使用 mmap。
3. 具有短生命周期的内存分配使用 brk,因为用 mmap 映射匿名页,当发生缺页异常时,linux 内核为缺页分配一个新物理页,并将该物理页清 0,一个 mmap 的内存块需要映射多个物理页,导致多次清 0 操作,很浪费系统资源,所以引入了 mmap分配阈值动态调整机制,保证在必要的情况下才使用 mmap 分配内存。
4. 尽量只缓存临时使用的空闲小内存块,对大内存块或是长生命周期的大内存块在释放时都直接归还给操作系统。
5. 对空闲的小内存块只会在 malloc 和 free 的时候进行合并,free 时空闲内存块可能放入 pool 中,不一定归还给操作系统。
6. 收缩堆的条件是当前 free 的块大小加上前后能合并 chunk 的大小大于 64KB、,并且堆顶的大小达到阈值,才有可能收缩堆,把堆最顶端的空闲内存返回给操作系统。
7. 需要保持长期存储的程序不适合用 ptmalloc 来管理内存。
8. 为了支持多线程,多个线程可以从同一个分配区(arena)中分配内存,ptmalloc假设线程 A 释放掉一块内存后,线程 B 会申请类似大小的内存,但是 A 释放的内存跟 B 需要的内存不一定完全相等,可能有一个小的误差,就需要不停地对内存块作切割和合并,这个过程中可能产生内存碎片。
2.6 内存管理数据结构概述
2.6.1 Main_arena 与 non_main_arena
Glibc 的 malloc 可以支持多线程,增加了非主分配区(non main arena)支持,主分配区与非主分配区用环形链表进行管理。每一个分配区利用互斥锁(mutex)使线程对于该分配区的访问互斥。
每个进程只有一个主分配区,但可能存在多个非主分配区,ptmalloc 根据系统对分配区的争用情况动态增加非主分配区的数量,分配区的数量一旦增加,就不会再减少了。主分配区可以访问进程的 heap 区域和 mmap 映射区域,也就是说主分配区可以使用 sbrk 和 mmap向操作系统申请虚拟内存。而非主分配区只能访问进程的 mmap 映射区域,非主分配区每次使用 mmap()向操作系统“批发”HEAP_MAX_SIZE(32 位系统上默认为 1MB,64 位系统默认为 64MB)大小的虚拟内存,当用户向非主分配区请求分配内存时再切割成小块“零售”出去,毕竟系统调用是相对低效的,直接从用户空间分配内存快多了。所以 ptmalloc 在必要的情况下才会调用 mmap()函数向操作系统申请虚拟内存。
当某一线程需要调用 malloc()分配内存空间时,该线程先查看线程私有变量中是否已经存在一个分配区,如果存在,尝试对该分配区加锁,如果加锁成功,使用该分配区分配内存,如果失败,该线程搜索循环链表试图获得一个没有加锁的分配区。如果所有的分配区都已经加锁,那么 malloc()会开辟一个新的分配区,把该分配区加入到全局分配区循环链表并加锁,然后使用该分配区进行分配内存操作。
2.6.2 chunk 的组织
不管内存是在哪里被分配的,用什么方法分配,用户请求分配的空间在 ptmalloc 中都使用一个 chunk 来表示。用户调用 free()函数释放掉的内存也并不是立即就归还给操作系统,相反,它们也会被表示为一个 chunk,ptmalloc 使用特定的数据结构来管理这些空闲chunk。
2.6.2.1 chunk格式
在内存中的样子如图所示:
chunk 指针指向一个 chunk 的开始,一个 chunk 中包含了用户请求的内存区域和相关的控制信息。图中的 mem 指针才是真正返回给用户的内存指针。chunk 的第二个域的最低一位为 P,它表示前一个块是否在使用中,P 为 0 则表示前一个 chunk 为空闲,这时chunk 的第一个域 prev_size 才有效,prev_size 表示前一个 chunk 的 size,程序可以使用这个值来找到前一个 chunk 的开始地址。当 P 为 1 时,表示前一个 chunk 正在使用中,prev_size无效,程序也就不可以得到前一个chunk的大小。不能对前一个chunk进行任何操作。ptmalloc分配的第一个块总是将 P 设为 1,以防止程序引用到不存在的区域。
Chunk 的第二个域的倒数第二个位为 M,他表示当前 chunk 是从哪个内存区域获得的虚拟内存。M 为 1 表示该 chunk 是从 mmap 映射区域分配的,否则是从 heap 区域分配的。
Chunk 的第二个域倒数第三个位为 A,表示该 chunk 属于主分配区或者非主分配区,如果属于非主分配区,将该位置为 1,否则置为 0。
空闲 chunk 在内存中的结构如图所示:
当 chunk 空闲时,其 M 状态不存在,只有 AP 状态,原本是用户数据区的地方存储了四个指针,指针 fd 指向后一个空闲的 chunk,而 bk 指向前一个空闲的 chunk,ptmalloc 通过这两个指针将大小相近的 chunk 连成一个双向链表。对于 large bin 中的空闲 chunk,还有两个指针,fd_nextsize 和 bk_nextsize,这两个指针用于加快在 large bin 中查找最近匹配的空闲chunk。不同的 chunk 链表又是通过 bins 或者 fastbins 来组织的。
2.6.3 空闲 chunk 容器
2.6.3.1 Bins
用户 free 掉的内存并不是都会马上归还给系统,ptmalloc 会统一管理 heap 和 mmap 映射区域中的空闲的 chunk,当用户进行下一次分配请求时,ptmalloc 会首先试图在空闲的chunk 中挑选一块给用户,这样就避免了频繁的系统调用,降低了内存分配的开销。ptmalloc将相似大小的 chunk 用双向链表链接起来,这样的一个链表被称为一个 bin。Ptmalloc 一共维护了 128 个 bin,并使用一个数组来存储这些 bin(如下图所示)。
small bins通常以8字节增长,large bins以64、512、4k、32k、256k进行分段增长。
数组中的第一个为 unsorted bin,数组中从 2 开始编号的前 64 个 bin 称为 small bins,同一个small bin中的chunk具有相同的大小。两个相邻的small bin中的chunk大小相差8bytes。small bins 中的 chunk 按照最近使用顺序进行排列,最后释放的 chunk 被链接到链表的头部,而申请 chunk 是从链表尾部开始,这样,每一个 chunk 都有相同的机会被 ptmalloc 选中。Small bins 后面的 bin 被称作 large bins。large bins 中的每一个 bin 分别包含了一个给定范围内的 chunk,其中的 chunk 按大小序排列。相同大小的 chunk 同样按照最近使用顺序排列。ptmalloc 使用“smallest-first,best-fit”原则在空闲 large bins 中查找合适的 chunk。
当空闲的 chunk 被链接到 bin 中的时候,ptmalloc 会把表示该 chunk 是否处于使用中的标志 P 设为 0(注意,这个标志实际上处在下一个 chunk 中),同时 ptmalloc 还会检查它前后的 chunk 是否也是空闲的,如果是的话,ptmalloc 会首先把它们合并为一个大的 chunk,然后将合并后的 chunk 放到 unstored bin 中。要注意的是,并不是所有的 chunk 被释放后就立即被放到 bin 中。ptmalloc 为了提高分配的速度,会把一些小的的 chunk 先放到一个叫做fast bins 的容器内。
2.6.3.2 Fast Bins
ptmalloc 中在分配过程中引入了 fast bins,不大于 max_fast (默认值为 64B)的 chunk 被释放后,首先会被放到 fast bins 中,fast bins 中的 chunk 并不改变它的使用标志 P。这样也就无法将它们合并,当需要给用户分配的 chunk 小于或等于 max_fast 时,ptmalloc 首先会在fast bins 中查找相应的空闲块,然后才会去查找bins中的空闲chunk。在某个特定的时候,ptmalloc会遍历fast bins中的chunk,将相邻的空闲 chunk 进行合并,并将合并后的 chunk 加入 unsorted bin 中,然后再将 usorted bin 里的 chunk 加入 bins 中。
2.6.3.3 Unsorted Bin
unsorted bin 的队列使用 bins 数组的第一个,如果被用户释放的 chunk 大于 max_fast,或者 fast bins 中的空闲 chunk 合并后,这些 chunk 首先会被放到 unsorted bin 队列中,在进行 malloc 操作的时候,如果在 fast bins 中没有找到合适的 chunk,则 ptmalloc 会先在 unsorted bin 中查找合适的空闲 chunk,然后才查找 bins。如果 unsorted bin 不能满足分配要求。malloc便会将 unsorted bin 中的 chunk 加入 bins 中。然后再从 bins 中继续进行查找和分配过程。从这个过程可以看出来,unsorted bin 可以看做是 bins 的一个缓冲区,增加它只是为了加快分配的速度。
2.6.3.4 Top chunk
并不是所有的 chunk 都按照上面的方式来组织,实际上,有三种例外情况。Top chunk,mmaped chunk 和 last remainder,下面会分别介绍这三类特殊的 chunk。top chunk 对于主分配区和非主分配区是不一样的。
对于非主分配区会预先从 mmap 区域分配一块较大的空闲内存模拟 sub-heap,通过管理 sub-heap 来响应用户的需求,因为内存是按地址从低向高进行分配的,在空闲内存的最高处,必然存在着一块空闲 chunk,叫做 top chunk。当 bins 和 fast bins 都不能满足分配需要的时候,ptmalloc 会设法在 top chunk 中分出一块内存给用户,如果 top chunk 本身不够大,分配程序会重新分配一个 sub-heap,并将 top chunk 迁移到新的 sub-heap 上,新的 sub-heap与已有的 sub-heap 用单向链表连接起来,然后在新的 top chunk 上分配所需的内存以满足分配的需要,实际上,top chunk 在分配时总是在 fast bins 和 bins 之后被考虑,所以,不论 top chunk 有多大,它都不会被放到 fast bins 或者是 bins 中。Top chunk 的大小是随着分配和回收不停变换的,如果从 top chunk 分配内存会导致 top chunk 减小,如果回收的 chunk 恰好与 top chunk 相邻,那么这两个 chunk 就会合并成新的 top chunk,从而使 top chunk 变大。如果在 free 时回收的内存大于某个阈值,且 top chunk 的大小也超过了收缩阈值,ptmalloc会收缩 sub-heap,如果 top-chunk 包含了整个 sub-heap,ptmalloc 会调用 munmap 把整个sub-heap 的内存返回给操作系统。
由于主分配区是唯一能够映射进程 heap 区域的分配区,它可以通过 sbrk()来增大或是收缩进程 heap 的大小,ptmalloc 在开始时会预先分配一块较大的空闲内存(也就是所谓的 heap),主分配区的 top chunk 在第一次调用 malloc 时会分配一块(chunk_size + 128KB) align 4KB大小的空间作为初始的 heap,用户从 top chunk 分配内存时,可以直接取出一块内存给用户。在回收内存时,回收的内存恰好与 top chunk 相邻则合并成新的 top chunk,当该次回收的空闲内存大小达到某个阈值,并且 top chunk 的大小也超过了收缩阈值,会执行内存收缩,减小 top chunk 的大小,但至少要保留一个页大小的空闲内存,从而把内存归还给操作系统。如果向主分配区的 top chunk 申请内存,而 top chunk 中没有空闲内存,ptmalloc会调用 sbrk()将的进程 heap 的边界 brk 上移,然后修改 top chunk 的大小。
2.6.3.5 mmaped chunk
当需要分配的 chunk 足够大,而且 fast bins 和 bins 都不能满足要求,甚至 top chunk 本身也不能满足分配需求时,ptmalloc 会使用 mmap 来直接使用内存映射来将页映射到进程空间。这样分配的 chunk 在被 free 时将直接解除映射,于是就将内存归还给了操作系统,再次对这样的内存区的引用将导致 segmentation fault 错误。这样的 chunk 也不会包含在任何bin 中。
2.6.3.6 Last remainder
Last remainder 是另外一种特殊的 chunk,就像 top chunk 和 mmaped chunk 一样,不会在任何 bins 中找到这种 chunk。当需要分配一个 small chunk,但在 small bins 中找不到合适的 chunk,如果 last remainder chunk 的大小大于所需的 small chunk 大小,last remainder chunk被分裂成两个 chunk,其中一个 chunk 返回给用户,另一个 chunk 变成新的 last remainder chuk。
2.6.4 sbrk 与 mmap
start_brk 指向 heap 的开始,而 brk 指向 heap 的顶部。可以使用系统调用 brk()和 sbrk()来增加标识 heap 顶部的 brk 值,从而线性的增加分配给用户的 heap 空间。在使 malloc 之前,brk的值等于start_brk,也就是说heap大小为0。ptmalloc在开始时,若请求的空间小于 mmap分配阈值(mmap threshold,默认值为 128KB)时,主分配区会调用 sbrk()增加一块大小为 (128 KB + chunk_size) align 4KB 的空间作为 heap。非主分配区会调用 mmap 映射一块大小为HEAP_MAX_SIZE(32 位系统上默认为 1MB,64 位系统上默认为 64MB)的空间作为 sub-heap。
需要分配的 chunk 大小小于 mmap分配阈值,而 heap 空间又不够,则此时主分配区会通过 sbrk()调用来增加 heap 大小,非主分配区会调用 mmap 映射一块新的 sub-heap,也就是增加 top chunk 的大小,每次 heap 增加的值都会对齐到 4KB。
当 ptmalloc munmap chunk 时,如果回收的 chunk 空间大小大于 mmap 分配阈值的当前值,并且小于DEFAULT_MMAP_THRESHOLD_MAX(32 位系统默认为 512KB,64 位系统默认为 32MB),ptmalloc 会把 mmap 分配阈值调整为当前回收的 chunk 的大小,并将 mmap 收缩阈值(mmap trim threshold)设置为 mmap 分配阈值的 2 倍。这就是 ptmalloc 的对 mmap分配阈值的动态调整机制,该机制是默认开启的,当然也可以用 mallopt()关闭该机制。
2.7 内存分配概述
1. 分配算法概述,以 32 系统为例,64 位系统类似。
- 小于等于 64 字节:用 pool 算法分配。
- 64 到 512 字节之间:在最佳匹配算法分配和 pool 算法分配中取一种合适的。
- 大于等于 512 字节:用最佳匹配算法分配。
- 大于等于 mmap 分配阈值(默认值 128KB):根据设置的 mmap 的分配策略进行分配,如果没有开启 mmap 分配阈值的动态调整机制,大于等于 128KB 就直接调用 mmap分配。否则,大于等于 mmap 分配阈值时才直接调用 mmap()分配。
2. ptmalloc 的响应用户内存分配要求的具体步骤为:
1) 获取分配区的锁,为了防止多个线程同时访问同一个分配区,在进行分配之前需要取得分配区域的锁。线程先查看线程私有实例中是否已经存在一个分配区,如果存在尝试对该分配区加锁,如果加锁成功,使用该分配区分配内存,否则,该线程搜索分配区循环链表试图获得一个空闲(没有加锁)的分配区。如果所有的分配区都已经加锁,那么 ptmalloc 会开辟一个新的分配区,把该分配区加入到全局分配区循环链表和线程的私有实例中并加锁,然后使用该分配区进行分配操作。开辟出来的新分配区一定为非主分配区,因为主分配区是从父进程那里继承来的。开辟非主分配区时会调用 mmap()创建一个 sub-heap,并设置好 top chunk。
2) 将用户的请求大小转换为实际需要分配的 chunk 空间大小。
3) 判断所需分配chunk的大小是否满足chunk_size <= max_fast (max_fast 默认为 64B),如果是的话,则转下一步,否则跳到第 5 步。
4) 首先尝试在 fast bins 中取一个所需大小的 chunk 分配给用户。如果可以找到,则分配结束。否则转到下一步。
5) 判断所需大小是否处在 small bins 中,即判断 chunk_size < 512B 是否成立。如果chunk 大小处在 small bins 中,则转下一步,否则转到第 6 步。
6) 根据所需分配的 chunk 的大小,找到具体所在的某个 small bin,从该 bin 的尾部摘取一个恰好满足大小的 chunk。若成功,则分配结束,否则,转到下一步。
7) 到了这一步,说明需要分配的是一块大的内存,或者 small bins 中找不到合适的chunk。于是,ptmalloc 首先会遍历 fast bins 中的 chunk,将相邻的 chunk 进行合并,并链接到 unsorted bin 中,然后遍历 unsorted bin 中的 chunk,如果 unsorted bin 只有一个 chunk,并且这个 chunk 在上次分配时被使用过,并且所需分配的 chunk 大小属于 small bins,并且 chunk 的大小大于等于需要分配的大小,这种情况下就直接将该 chunk 进行切割,分配结束,否则将根据 chunk 的空间大小将其放入 small bins 或是 large bins 中,遍历完成后,转入下一步。
8) 到了这一步,说明需要分配的是一块大的内存,或者 small bins 和 unsorted bin 中都找不到合适的 chunk,并且 fast bins 和 unsorted bin 中所有的 chunk 都清除干净了。从 large bins 中按照“smallest-first,best-fit”原则,找一个合适的 chunk,从中划分一块所需大小的 chunk,并将剩下的部分链接回到 bins 中。若操作成功,则分配结束,否则转到下一步。
9) 如果搜索 fast bins 和 bins 都没有找到合适的 chunk,那么就需要操作 top chunk 来进行分配了。判断 top chunk 大小是否满足所需 chunk 的大小,如果是,则从 top chunk 中分出一块来。否则转到下一步。
10) 到了这一步,说明 top chunk 也不能满足分配要求,所以,于是就有了两个选择: 如果是主分配区,调用 sbrk(),增加 top chunk 大小;如果是非主分配区,调用 mmap来分配一个新的 sub-heap,增加 top chunk 大小;或者使用 mmap()来直接分配。在这里,需要依靠 chunk 的大小来决定到底使用哪种方法。判断所需分配的 chunk大小是否大于等于 mmap 分配阈值,如果是的话,则转下一步,调用 mmap 分配,否则跳到第 12 步,增加 top chunk 的大小。
11) 使用 mmap 系统调用为程序的内存空间映射一块 chunk_size align 4kB 大小的空间。然后将内存指针返回给用户。
12) 判断是否为第一次调用 malloc,若是主分配区,则需要进行一次初始化工作,分配一块大小为(chunk_size + 128KB) align 4KB 大小的空间作为初始的 heap。若已经初始化过了,主分配区则调用 sbrk()增加 heap 空间,分主分配区则在 top chunk 中切割出一个 chunk,使之满足分配需求,并将内存指针返回给用户。
总结一下:根据用户请求分配的内存的大小,ptmalloc 有可能会在两个地方为用户分配内存空间。在第一次分配内存时,一般情况下只存在一个主分配区,但也有可能从父进程那里继承来了多个非主分配区,在这里主要讨论主分配区的情况,brk 值等于start_brk,所以实际上 heap 大小为 0,top chunk 大小也是 0。这时,如果不增加 heap大小,就不能满足任何分配要求。所以,若用户的请求的内存大小小于 mmap 分配阈值,则 ptmalloc 会初始 heap。然后在 heap 中分配空间给用户,以后的分配就基于这个 heap进行。若第一次用户的请求就大于 mmap 分配阈值,则 ptmalloc 直接使用 mmap()分配一块内存给用户,而 heap 也就没有被初始化,直到用户第一次请求小于 mmap 分配阈值的内存分配。第一次以后的分配就比较复杂了,简单说来,ptmalloc 首先会查找 fast bins,如果不能找到匹配的 chunk,则查找 small bins。若还是不行,合并 fast bins,把 chunk加入 unsorted bin,在 unsorted bin 中查找,若还是不行,把 unsorted bin 中的 chunk 全加入 large bins 中,并查找 large bins。在 fast bins 和 small bins 中的查找都需要精确匹配,而在 large bins 中查找时,则遵循“smallest-first,best-fit”的原则,不需要精确匹配。若以上方法都失败了,则 ptmalloc 会考虑使用 top chunk。若 top chunk 也不能满足分配要求。而且所需 chunk 大小大于 mmap 分配阈值,则使用 mmap 进行分配。否则增加heap,增大 top chunk。以满足分配要求。
2.8内存回收概述
free() 函数接受一个指向分配区域的指针作为参数,释放该指针所指向的 chunk。而具体的释放方法则看该 chunk 所处的位置和该 chunk 的大小。free()函数的工作步骤如下:
1) free()函数同样首先需要获取分配区的锁,来保证线程安全。
2) 判断传入的指针是否为 0,如果为 0,则什么都不做,直接 return。否则转下一步。
3) 判断所需释放的 chunk 是否为 mmaped chunk,如果是,则调用 munmap()释放mmaped chunk,解除内存空间映射,该该空间不再有效。如果开启了 mmap 分配阈值的动态调整机制,并且当前回收的 chunk 大小大于 mmap 分配阈值,将 mmap分配阈值设置为该 chunk 大小,将 mmap 收缩阈值设定为 mmap 分配阈值的 2倍,释放完成,否则跳到下一步。
4) 判断 chunk 的大小和所处的位置,若 chunk_size <= max_fast,并且 chunk 并不位于heap 的顶部,也就是说并不与 top chunk 相邻,则转到下一步,否则跳到第 6 步。(因为与 top chunk 相邻的小 chunk 也和 top chunk 进行合并,所以这里不仅需要判断大小,还需要判断相邻情况)
5) 将 chunk 放到 fast bins 中,chunk 放入到 fast bins 中时,并不修改该 chunk 使用状态位 P。也不与相邻的 chunk 进行合并。只是放进去,如此而已。这一步做完之后释放便结束了,程序从 free()函数中返回。
6) 判断前一个 chunk 是否处在使用中,如果前一个块也是空闲块,则合并。并转下一步。
7) 判断当前释放 chunk 的下一个块是否为 top chunk,如果是,则转第 9 步,否则转下一步。
8) 判断下一个 chunk 是否处在使用中,如果下一个 chunk 也是空闲的,则合并,并将合并后的 chunk 放到 unsorted bin 中。注意,这里在合并的过程中,要更新 chunk的大小,以反映合并后的 chunk 的大小。并转到第 10 步。
9) 如果执行到这一步,说明释放了一个与 top chunk 相邻的 chunk。则无论它有多大,都将它与 top chunk 合并,并更新 top chunk 的大小等信息。转下一步。
10) 判断合并后的 chunk 的大小是否大于 FASTBIN_CONSOLIDATION_THRESHOLD(默认64KB),如果是的话,则会触发进行 fast bins 的合并操作,fast bins 中的 chunk 将被遍历,并与相邻的空闲 chunk 进行合并,合并后的 chunk 会被放到 unsorted bin 中。fast bins 将变为空,操作完成之后转下一步。
11) 判断 top chunk 的大小是否大于 mmap 收缩阈值(默认为 128KB),如果是的话,对于主分配区,则会试图归还 top chunk 中的一部分给操作系统。但是最先分配的128KB 空间是不会归还的,ptmalloc 会一直管理这部分内存,用于响应用户的分配请求;如果为非主分配区,会进行 sub-heap 收缩,将 top chunk 的一部分返回给操作系统,如果 top chunk 为整个 sub-heap,会把整个 sub-heap 还回给操作系统。做完这一步之后,释放结束,从 free() 函数退出。可以看出,收缩堆的条件是当前free 的 chunk 大小加上前后能合并 chunk 的大小大于 64k,并且要 top chunk 的大小要达到 mmap 收缩阈值,才有可能收缩堆。
2.9 配置选项概述
Ptmalloc 主要提供以下几个配置选项用于调优,这些选项可以通过 mallopt()进行设置:
1. M_MXFAST
M_MXFAST 用于设置 fast bins 中保存的 chunk 的最大大小,默认值为 64B,fast bins 中保存的 chunk 在一段时间内不会被合并,分配小对象时可以首先查找 fast bins,如果 fast bins找到了所需大小的 chunk,就直接返回该 chunk,大大提高小对象的分配速度,但这个值设置得过大,会导致大量内存碎片,并且会导致 ptmalloc 缓存了大量空闲内存,去不能归还给操作系统,导致内存暴增。M_MXFAST 的最大值为 80B,不能设置比 80B 更大的值,因为设置为更大的值并不能提高分配的速度。Fast bins 是为需要分配许多小对象的程序设计的,比如要分配许多小 struct,小对象,小的 string 等等。如果设置该选项为 0,就会不使用 fast bins。
2. M_TRIM_THRESHOLD
M_TRIM_THRESHOLD 用于设置 mmap 收缩阈值,默认值为 128KB。自动收缩只会在 free时才发生,如果当前 free 的 chunk 大小加上前后能合并 chunk 的大小大于 64KB,并且 top chunk 的大小达到 mmap 收缩阈值,对于主分配区,调用 malloc_trim()返回一部分内存给操作系统,对于非主分配区,调用 heap_trim()返回一部分内存给操作系统,在发生内存收缩时,还是从新设置 mmap 分配阈值和 mmap 收缩阈值。这个选项一般与 M_MMAP_THRESHOLD 选项一起使用,M_MMAP_THRESHOLD 用于设置mmap 分配阈值,对于长时间运行的程序,需要对这两个选项进行调优,尽量保证在 ptmalloc中缓存的空闲 chunk 能够得到重用,尽量少用 mmap 分配临时用的内存。不停地使用系统调用 mmap 分配内存,然后很快又 free 掉该内存,这样是很浪费系统资源的,并且这样分配的内存的速度比从 ptmalloc 的空闲 chunk 中分配内存慢得多,由于需要页对齐导致空间利用率降低,并且操作系统调用 mmap()分配内存是串行的,在发生缺页异常时加载新的物理页,需要对新的物理页做清 0 操作,大大影响效率。
M_TRIM_THRESHOLD 的值必须设置为页大小对齐,设置为-1 会关闭内存收缩设置。
注意:试图在程序开始运行时分配一块大内存,并马上释放掉,以期望来触发内存收缩,这是不可能的,因为该内存马上就返回给操作系统了。
3. M_MMAP_THRESHOLD
M_MMAP_THRESHOLD 用于设置 mmap 分配阈值,默认值为 128KB,ptmalloc 默认开启动态调整 mmap 分配阈值和 mmap 收缩阈值。
当用户需要分配的内存大于mmap分配阈值,ptmalloc的malloc()函数其实相当于mmap()的简单封装,free 函数相当于 munmap()的简单封装。相当于直接通过系统调用分配内存,回收的内存就直接返回给操作系统了。因为这些大块内存不能被 ptmalloc 缓存管理,不能重用,所以 ptmalloc 也只有在万不得已的情况下才使用该方式分配内存。
但使用 mmap 分配有如下的好处:
- Mmap 的空间可以独立从系统中分配和释放的系统,对于长时间运行的程序,申请长生命周期的大内存块就很适合有这种方式。
- Mmap 的空间不会被 ptmalloc 锁在缓存的 chunk 中,不会导致 ptmalloc 内存暴增的问题。
- 对有些系统的虚拟地址空间存在洞,只能用 mmap()进行分配内存,sbrk()不能运行。
使用 mmap 分配内存的缺点: - 该内存不能被 ptmalloc 回收再利用。
- 会导致更多的内存浪费,因为 mmap 需要按页对齐。
- 它的分配效率跟操作系统提供的 mmap()函数的效率密切相关,Linux 系统强制把匿名 mmap 的内存物理页清 0 是很低效的。所以用 mmap 来分配长生命周期的大内存块就是最好的选择,其他情况下都不太高效。
4. M_MMAP_MAX
M_MMAP_MAX 用于设置进程中用 mmap 分配的内存块的最大限制,默认值为 64K,因为有些系统用 mmap 分配的内存块太多会导致系统的性能下降。如果将 M_MMAP_MAX 设置为 0,ptmalloc 将不会使用 mmap 分配大块内存。Ptmalloc 为优化锁的竞争开销,做了 PER_THREAD 的优化,也提供了两个选项,M_ARENA_TEST 和 M_ARENA_MAX,由于 PER_THREAD 的优化默认没有开启,这里暂不对这两个选项做介绍。
另外,ptmalloc 没有提供关闭 mmap 分配阈值动态调整机制的选项,mmap 分配阈值动态调整时默认开启的,如果要关闭 mmap 分 配 阈 值 动 态 调 整 机 制 , 可 以 设 置M_TRIM_THRESHOLD,M_MMAP_THRESHOLD,M_TOP_PAD 和 M_MMAP_MAX 中的任意一个。
但是强烈建议不要关闭该机制,该机制保证了 ptmalloc 尽量重用缓存中的空闲内存,不用每次对相对大一些的内存使用系统调用 mmap 去分配内存。