Bootstrap

图相似度j计算——SimGNN

论文链接:

SimGNN: A Neural Network Approachto Fast Graph Similarity Computation

个人理解:

重中之重就是理解该图:
在这里插入图片描述
逐步来击破这幅图吧。

数据处理:

论文中给定的例子所提供的数据是 json 格式。
读取数据:

train_graphs = glob.glob('data/train/'+'*.json')
test_graphs = glob.glob('data/test/'+'*.json')

看提供的图可得知,特征为one-hot 编码,将数据处理成需要的格式。

1、获取图节点所拥有的所有特征!

def node_mapping():
    nodes_id = set()
    graph_pairs = train_graphs + test_graphs
    for graph_pair in graph_pairs:
        graph = json.load(open(graph_pair))
        nodes_id = nodes_id.union(set(graph['labels_1']))
        nodes_id = nodes_id.union(set(graph['labels_2']))
    nodes_id = sorted(nodes_id)
    nodes_id = {id:index for index,id in enumerate(nodes_id)}
    num_nodes_id = len(nodes_id)
    print(nodes_id,num_nodes_id)
    return nodes_id,num_nodes_id

l理解上述代码:
理解node_mapping()函数的作用:
例如: graph1.json:{
“labels_1”: [“A”, “B”, “C”],
“labels_2”: [“D”, “E”] } =>train_graph graph2.json:{
“labels_1”: [“C”, “F”],
“labels_2”: [“A”, “G”] } => test_graph 执行: graph_pairs = train_graphs + test_graphs 得:=> graph_pairs =
[‘graph1.json’,‘graph2.json’]

执行: for graph_pair in graph_pairs: 第一个循环:graph =
json.load(open(‘graph1.json’)) 得: #graph = {“labels_1”: [“A”, “B”,
“C”], “labels_2”: [“D”, “E”]}

nodes_id = nodes_id.union(set(graph[‘labels_1’])) # {“A”, “B”, “C”}
nodes_id = nodes_id.union(set(graph[‘labels_2’])) # {“A”, “B”, “C”,
“D”, “E”}

第二个循环:graph = json.load(open(‘graph2.json’)) 得: #graph = {“labels_1”:
[“C”, “F”], “labels_2”: [“A”, “G”]} nodes_id =
nodes_id.union(set(graph[‘labels_1’])) # {“A”, “B”, “C”, “D”, “E”,
“F”} nodes_id = nodes_id.union(set(graph[‘labels_2’])) # {“A”, “B”,
“C”, “D”, “E”, “F”, “G”}

执行: nodes_id = sorted(nodes_id) 进行排序 得: # [“A”, “B”, “C”, “D”, “E”,
“F”, “G”]

执行: nodes_id = {id:index for index,id in enumerate(nodes_id)} 进行索引的建立
得:# nodes_id = {“A”: 0, “B”: 1, “C”: 2, “D”: 3, “E”: 4, “F”: 5, “G”:
6} 简简单单理解这段代码,作用也就是完成one-hot 编码的建立

2、创建数据加载器:

def load_dataset():
    train_dataset = []
    test_dataset = []
    nodes_id, num_nodes_id = node_mapping()

    for graph_pair in train_graphs:
        graph = json.load(open(graph_pair))
        data = process_data(graph,nodes_id)
        train_dataset.append(data)
    for graph_pair in test_graphs:
        graph = json.load(open(graph_pair))
        data = process_data(graph, nodes_id)
        test_dataset.append(data)
    return train_dataset,test_dataset,num_nodes_id

其中,process_data() 函数:

def process_data(graph,nodes_id):
    data = dict()

    # 获取每个图的邻接矩阵
    edges_1 = graph['graph_1'] + [[y,x] for x,y in graph['graph_1']]
    edges_2 = graph['graph_2'] + [[y,x] for x,y in graph['graph_2']]
    edges_1 = torch.from_numpy(np.array(edges_1,dtype=np.int64).T).type(torch.long)
    edges_2 = torch.from_numpy(np.array(edges_2,dtype=np.int64).T).type(torch.long)

    data['edge_index_1'] = edges_1
    data['edge_index_2'] = edges_2

    feature_1 ,feature_2 = [],[]
    for n in graph['labels_1']:
        feature_1.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])
    for n in graph['labels_2']:
        feature_2.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])

    feature_1 = torch.FloatTensor(np.array(feature_1))
    feature_2 = torch.FloatTensor(np.array(feature_2))

    data['features_1'] = feature_1
    data['features_2'] = feature_2

    norm_ged = graph['ged'] / (0.5 * (len(graph['labels_1']) +len(graph['labels_2'])))
    data['norm_ged'] = norm_ged

    data["target"] = torch.from_numpy(np.exp(-norm_ged).reshape(1, 1)).view(-1).float().unsqueeze(0)

    return data

理解process_data ()函数:
理解process_data()函数的作用:
数据假设: {
“graph_1”: [[0, 1], [1, 2]], // 边的列表
“graph_2”: [[0, 2], [2, 3]],
“labels_1”: [“A”, “B”, “C”], // 图1的节点标签
“labels_2”: [“A”, “C”, “D”], // 图2的节点标签
“ged”: 2 // 图编辑距离 } 使用node_mapping()得到:nodes_id = {“A”: 0, “B”: 1, “C”: 2, “D”: 3, “E”: 4, “F”: 5, “G”: 6} 执行:edges_1 =
graph[‘graph_1’] + [[y, x] for x, y in graph[‘graph_1’]] 得: # [[0,
1], [1, 2], [1, 0], [2, 1]] 前部分是获取正向边,后边是添加反向边 执行:edges_2 =
graph[‘graph_2’] + [[y, x] for x, y in graph[‘graph_2’]] 得: # [[0,
2], [2, 3], [2, 0], [3, 2]]

执行:edges_1 = torch.from_numpy(np.array(edges_1,
dtype=np.int64).T).type(torch.long) 得:将其转换为tensor类型

第一个循环: 执行:for n in graph[‘labels_1’]: # [“A”, “B”, “C”]
执行:feature_1.append([1.0 if nodes_id[n] == i else 0.0 for i in
nodes_id.values()]) 得:

feature_1 = [

  [ A ,  B ,  C ,  D , E  ,  F ,  G ]

[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # “A”

[0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0], # “B”

[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0] # “C” 第二个循环: for n in graph[‘labels_2’]: # [“A”, “C”, “D”]

feature_2.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])

feature_2 = [

[1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0], # “A”

[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0], # “C”

[0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] # “D”

]

执行:feature_1 = torch.FloatTensor(np.array(feature_1)) 得:将其转换为张量

计算ged: norm_ged = graph['ged'] / (0.5 * (len(graph['labels_1']) + len(graph['labels_2'])))

norm_ged = 2 / (0.5 * (3 + 3)) = 2 / 3 = 0.6667

计算目标值: data['target'] = torch.from_numpy(np.exp(-norm_ged).reshape(1,

1)).view(-1).float().unsqueeze(0)

target = torch.from_numpy(np.exp(-0.6667).reshape(1, 1)).view(-1).float().unsqueeze(0)

target = torch.tensor([[0.5134]])

理解一下ged: Graph Edit Distance :图编辑距离 Ged 是衡量两个图之间的相似度的标识,ged越小,则越相似。 ged 是表示将一个图转变为另一个图的最小操作数(节点和边的添加、删除、替换等)。

norm_ged = GED / (0.5 * (V1 + V2 )) 其中V1和V2 是两个图的节点。

理解一下target: target = exp(-norm_ged),很多公式都会取负指数,因为这样能够将数值限定在0到1之间。

到这就完成了数据的处理。

卷积层:

在这里插入图片描述

这层直接调用就行,无需过多了解。

注意力层

在这里插入图片描述
论文中的公式如下:
在这里插入图片描述

class AttentionModule(nn.Module):
    def __init__(self,args):
        super(AttentionModule,self).__init__()
        self.args = args
        self.setup_weights()
        self.init_parameters()

    def setup_weights(self):
        # 创建权重矩阵(并未赋值),fiLters_3 = 32
        self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3))
    def init_parameters(self):
        # 为权重矩阵进行赋值。
        nn.init.xavier_uniform_(self.weight_matrix)

    def forward(self, embedding):
        # embedding:(num_nodes=14, num_features=32)
        # 在每个特征维度上,取节点平均值
        # 执行torch.matmul(embedding, self.weight_matrix)=>[14,32]
        # 执行torch.mean(,dim=0) => [32,] 其实就是一行32列
        global_context = torch.mean(torch.matmul(embedding, self.weight_matrix), dim=0)
        # [32,] => [32,]
        transformed_global = torch.tanh(global_context)

        # sigmoid_scores计算每个节点与图之间的相似性得分(注意力)
        # sigmoid_scores:(14)
        # 执行:transormed_global.view(-1,1) [32,]=> [32,1]
        # 执行:torch.mm() =>矩阵乘法=>[14,32] × [32,1] = [14,1],
        # 注意:这里的实现并没有完全跟论文相同,缺少了一个转置,放在下一步实现了
        sigmoid_scores = torch.sigmoid(torch.mm(embedding, transformed_global.view(-1, 1)))

        # representation:图的嵌入(32)
        # 执行:torch.t(embedding) [14,32] =>[32,14]
        # 执行:torch.mm() [32,14] * [14,1] =>[32,1]
        representation = torch.mm(torch.t(embedding), sigmoid_scores)

        return representation

张量网络层:

在这里插入图片描述
张量网络层的公式如下:
在这里插入图片描述

class TensorNetworkModule(nn.Module):
    def __init__(self,args):
        super(TensorNetworkModule,self).__init__()
        self.args = args
        self.setup_weights()
        self.init_parameters()

    def setup_weights(self):
        # tensor_neurons 表示神经元数目
        # 三维张量 M
        self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3, self.args.tensor_neurons))
        # 权重矩阵 V
        self.weight_matrix_block = nn.Parameter(torch.Tensor(self.args.tensor_neurons,2*self.args.filters_3))
        # 偏置向量 b
        self.bias = nn.Parameter(torch.Tensor(self.args.tensor_neurons,1))
    def init_parameters(self):
        nn.init.xavier_uniform_(self.weight_matrix)
        nn.init.xavier_uniform_(self.weight_matrix_block)
        nn.init.xavier_uniform_(self.bias)

    def forward(self,embedding_1,embedding_2):
        # 这一部分实现:h1^T * M * h2
        # embedding_1 = [32,1] 经转置=> [1,32]
        # M = [32,32,16]
        # scoring = [1,32] * [32,512] = [1,512]
        scoring = torch.mm(torch.t(embedding_1),self.weight_matrix.view(self.args.filters_3,-1))
        # scoring = [32,16]
        scoring = scoring.view(self.args.filters_3,self.args.tensor_neurons) # shape=[32,16]
        # scoring = [16,1]
        scoring = torch.mm(torch.t(scoring),embedding_2) # shape = [16,1]
        # 就是论文中将两个嵌入向量叠加起来
        combined_representation = torch.cat((embedding_1,embedding_2))
        # V*[]
        block_scoring = torch.mm(self.weight_matrix_block,combined_representation)

        scores = F.relu(scoring + block_scoring +self.bias)

        return scores

理解这一部分张量网络:
根据SimGNN论文中的公式: 假设embedding_1 和 embedding_2 都为
[32,1],self.args.filters_3=32,self.args.tensor_neurons=16 可得:
self.weight_matrix = [32,32,16]
self.weight_matrix_block = [16,64]
self.bias = [16,1] 问题一:M 为啥是三维的权重矩阵呢? 例子中的M是[32,32,16] 表示k = 16个32*32的矩阵

定义simgnn网络模型:

class SimGNN(nn.Module):
    def __init__(self,args,num_nodes_id):
        super(SimGNN,self).__init__()
        self.args = args

        self.num_nodes_id = num_nodes_id
        self.setup_layers()

    # 是否使用直方图
    def calculate_bottleneck_features(self):
        if self.args.histogram == True:
            self.feature_count = self.args.tensor_neurons + self.args.bins
        else:
            self.feature_count = self.args.tensor_neurons
    def setup_layers(self):
        self.calculate_bottleneck_features()
        self.convolution_1 = GCNConv(self.num_nodes_id,self.args.filters_1)
        self.convolution_2 = GCNConv(self.args.filters_1,self.args.filters_2)
        self.convolution_3 = GCNConv(self.args.filters_2,self.args.filters_3)

        self.attention = AttentionModule(self.args)


        self.tensor_network = TensorNetworkModule(self.args)

        self.fully_connected_first = nn.Linear(self.feature_count,self.args.bottle_neck_neurons)
        self.scoring_layer = nn.Linear(self.args.bottle_neck_neurons,1)

    def calculate_histogram(self,abstract_features_1, abstract_features_2):
        """
        理解calculate_histogram函数:
        作用:用于计算节点特征的直方图,用于衡量图之间的相似性。
        """
        # abstract_features_1:(num_nodes1, num_features=32)
        # abstract_features_2:(num_features=32, num_nodes2) 这里是完成转置了
        # 执行torch.mm 后得到 相似性得分矩阵。
        scores = torch.mm(abstract_features_1, abstract_features_2).detach()
        scores = scores.view(-1, 1)
        # 计算直方图,将得分分为 bins 个区间。
        # 例如 bins为 8,hist = tensor([4., 3., 1., 0., 0., 2., 1., 1.])
        hist = torch.histc(scores, bins=self.args.bins)  # 统计得分在每个区间的个数
        # hist = tensor([0.3333, 0.2500, 0.0833, 0.0000, 0.0000, 0.1667, 0.0833, 0.0833])
        hist = hist / torch.sum(hist)  # 归一化
        hist = hist.view(1, -1)

        return hist

    def convolutional_pass(self, edge_index, features):
        features = self.convolution_1(features, edge_index)
        features = F.relu(features)
        features = F.dropout(features, p=self.args.dropout, training=self.training)
        features = self.convolution_2(features, edge_index)
        features = F.relu(features)
        features = F.dropout(features, p=self.args.dropout, training=self.training)
        features = self.convolution_3(features, edge_index)
        return features

    def forward(self, data):
        # 获取图 1 的邻接矩阵
        edge_index_1 = data["edge_index_1"]
        # 获取图 2 的邻接矩阵
        edge_index_2 = data["edge_index_2"]
        # 获取图 1 的特征(独热编码)
        features_1 = data["features_1"]  # (num_nodes1, num_features=16)
        features_2 = data["features_2"]  # (num_nodes2, num_features=16)
        # (num_nodes1, num_features=16) ——> (num_nodes1, num_features=32)
        abstract_features_1 = self.convolutional_pass(edge_index_1,features_1)
        # (num_nodes2, num_features=16) ——> (num_nodes2, num_features=32)
        abstract_features_2 = self.convolutional_pass(edge_index_2,features_2)

        # 直方图
        if self.args.histogram == True:
            hist = self.calculate_histogram(abstract_features_1, torch.t(abstract_features_2))
        # 池化
        pooled_features_1 = self.attention(abstract_features_1)  # (num_nodes1, num_features=32) ——> (num_features=32)
        pooled_features_2 = self.attention(abstract_features_2)  # (num_nodes2, num_features=32) ——> (num_features=32)
        # NTN模型
        scores = self.tensor_network(pooled_features_1, pooled_features_2)
        scores = torch.t(scores)

        if self.args.histogram == True:
            scores = torch.cat((scores, hist), dim=1).view(1, -1)

        scores = F.relu(self.fully_connected_first(scores))
        score = torch.sigmoid(self.scoring_layer(scores))

        return score

整体代码:

import glob,json
import numpy as np
import torch,os,math,random
import torch.nn as nn
import torch.nn.functional as F
import argparse
from tqdm import tqdm, trange
from torch import optim
from torch_geometric.nn import GCNConv
from parameter import parameter_parser,IOStream,table_printer
# 这里读取完也是json格式的文件
train_graphs = glob.glob('data/train/'+'*.json')
test_graphs = glob.glob('data/test/'+'*.json')

def node_mapping():
    nodes_id = set()
    graph_pairs = train_graphs + test_graphs
    for graph_pair in graph_pairs:
        graph = json.load(open(graph_pair))
        nodes_id = nodes_id.union(set(graph['labels_1']))
        nodes_id = nodes_id.union(set(graph['labels_2']))
    nodes_id = sorted(nodes_id)
    nodes_id = {id:index for index,id in enumerate(nodes_id)}
    num_nodes_id = len(nodes_id)
    print(nodes_id,num_nodes_id)
    return nodes_id,num_nodes_id


"""
理解node_mapping()函数的作用:
例如:
graph1.json:{
    "labels_1": ["A", "B", "C"],
    "labels_2": ["D", "E"]
}   =>train_graph
graph2.json:{
    "labels_1": ["C", "F"],
    "labels_2": ["A", "G"]
}    => test_graph
执行:  graph_pairs = train_graphs + test_graphs 
得:=> graph_pairs = ['graph1.json','graph2.json']

执行: for graph_pair in graph_pairs:
第一个循环:graph = json.load(open('graph1.json'))
得: #graph = {"labels_1": ["A", "B", "C"], "labels_2": ["D", "E"]}

nodes_id = nodes_id.union(set(graph['labels_1']))  # {"A", "B", "C"}
nodes_id = nodes_id.union(set(graph['labels_2']))  # {"A", "B", "C", "D", "E"}

第二个循环:graph = json.load(open('graph2.json'))
得: #graph = {"labels_1": ["C", "F"], "labels_2": ["A", "G"]}
nodes_id = nodes_id.union(set(graph['labels_1']))  # {"A", "B", "C", "D", "E", "F"}
nodes_id = nodes_id.union(set(graph['labels_2']))  # {"A", "B", "C", "D", "E", "F", "G"}

执行:  nodes_id = sorted(nodes_id) 进行排序
得: # ["A", "B", "C", "D", "E", "F", "G"]

执行: nodes_id = {id:index for index,id in enumerate(nodes_id)}  进行索引的建立
得:# nodes_id = {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5, "G": 6}
简简单单理解这段代码,作用也就是完成one-hot 编码的建立
"""
def load_dataset():
    train_dataset = []
    test_dataset = []
    nodes_id, num_nodes_id = node_mapping()

    for graph_pair in train_graphs:
        graph = json.load(open(graph_pair))
        data = process_data(graph,nodes_id)
        train_dataset.append(data)
    for graph_pair in test_graphs:
        graph = json.load(open(graph_pair))
        data = process_data(graph, nodes_id)
        test_dataset.append(data)
    return train_dataset,test_dataset,num_nodes_id


def process_data(graph,nodes_id):
    data = dict()

    # 获取每个图的邻接矩阵
    edges_1 = graph['graph_1'] + [[y,x] for x,y in graph['graph_1']]
    edges_2 = graph['graph_2'] + [[y,x] for x,y in graph['graph_2']]
    edges_1 = torch.from_numpy(np.array(edges_1,dtype=np.int64).T).type(torch.long)
    edges_2 = torch.from_numpy(np.array(edges_2,dtype=np.int64).T).type(torch.long)

    data['edge_index_1'] = edges_1
    data['edge_index_2'] = edges_2

    feature_1 ,feature_2 = [],[]
    for n in graph['labels_1']:
        feature_1.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])
    for n in graph['labels_2']:
        feature_2.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])

    feature_1 = torch.FloatTensor(np.array(feature_1))
    feature_2 = torch.FloatTensor(np.array(feature_2))

    data['features_1'] = feature_1
    data['features_2'] = feature_2

    norm_ged = graph['ged'] / (0.5 * (len(graph['labels_1']) +len(graph['labels_2'])))
    data['norm_ged'] = norm_ged

    data["target"] = torch.from_numpy(np.exp(-norm_ged).reshape(1, 1)).view(-1).float().unsqueeze(0)

    return data

"""
 理解process_data()函数的作用:
 数据假设:
 {
    "graph_1": [[0, 1], [1, 2]],  // 边的列表
    "graph_2": [[0, 2], [2, 3]],
    "labels_1": ["A", "B", "C"],  // 图1的节点标签
    "labels_2": ["A", "C", "D"],  // 图2的节点标签
    "ged": 2  // 图编辑距离
}
使用node_mapping()得到:nodes_id = {"A": 0, "B": 1, "C": 2, "D": 3, "E": 4, "F": 5, "G": 6}
执行:edges_1 = graph['graph_1'] + [[y, x] for x, y in graph['graph_1']] 
得: # [[0, 1], [1, 2], [1, 0], [2, 1]]  前部分是获取正向边,后边是添加反向边
执行:edges_2 = graph['graph_2'] + [[y, x] for x, y in graph['graph_2']] 
得: # [[0, 2], [2, 3], [2, 0], [3, 2]]

执行:edges_1 = torch.from_numpy(np.array(edges_1, dtype=np.int64).T).type(torch.long)
得:将其转换为tensor类型

第一个循环:
执行:for n in graph['labels_1']:  # ["A", "B", "C"]
执行:feature_1.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])
得:
# feature_1 = [
      [ A ,  B ,  C ,  D , E  ,  F ,  G ]
#     [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],  # "A" 
#     [0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],  # "B" 
#     [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]   # "C" 
第二个循环:
for n in graph['labels_2']:  # ["A", "C", "D"]
    feature_2.append([1.0 if nodes_id[n] == i else 0.0 for i in nodes_id.values()])
# feature_2 = [
#     [1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],  # "A" 
#     [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0],  # "C" 
#     [0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0]   # "D" 
# ]

执行:feature_1 = torch.FloatTensor(np.array(feature_1))
得:将其转换为张量

    计算ged:
norm_ged = graph['ged'] / (0.5 * (len(graph['labels_1']) + len(graph['labels_2'])))
# norm_ged = 2 / (0.5 * (3 + 3)) = 2 / 3 = 0.6667

    计算目标值:
data['target'] = torch.from_numpy(np.exp(-norm_ged).reshape(1, 1)).view(-1).float().unsqueeze(0)
# target = torch.from_numpy(np.exp(-0.6667).reshape(1, 1)).view(-1).float().unsqueeze(0)
# target = torch.tensor([[0.5134]])

    理解一下ged:
Graph Edit Distance :图编辑距离
Ged 是衡量两个图之间的相似度的标识,ged越小,则越相似。
ged 是表示将一个图转变为另一个图的最小操作数(节点和边的添加、删除、替换等)。
norm_ged = GED / (0.5 * (V1 + V2 ))  其中V1和V2 是两个图的节点。

    理解一下target:
target = exp(-norm_ged),很多公式都会取负指数,因为这样能够将数值限定在0到1之间。
"""

# 定义注意力模块
class AttentionModule(nn.Module):
    def __init__(self,args):
        super(AttentionModule,self).__init__()
        self.args = args
        self.setup_weights()
        self.init_parameters()

    def setup_weights(self):
        # 创建权重矩阵(并未赋值),fiLters_3 = 32
        self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3))
    def init_parameters(self):
        # 为权重矩阵进行赋值。
        nn.init.xavier_uniform_(self.weight_matrix)

    def forward(self, embedding):
        # embedding:(num_nodes=14, num_features=32)
        # 在每个特征维度上,取节点平均值
        # 执行torch.matmul(embedding, self.weight_matrix)=>[14,32]
        # 执行torch.mean(,dim=0) => [32,] 其实就是一行32列
        global_context = torch.mean(torch.matmul(embedding, self.weight_matrix), dim=0)
        # [32,] => [32,]
        transformed_global = torch.tanh(global_context)

        # sigmoid_scores计算每个节点与图之间的相似性得分(注意力)
        # sigmoid_scores:(14)
        # 执行:transormed_global.view(-1,1) [32,]=> [32,1]
        # 执行:torch.mm() =>矩阵乘法=>[14,32] × [32,1] = [14,1],
        # 注意:这里的实现并没有完全跟论文相同,缺少了一个转置,放在下一步实现了
        sigmoid_scores = torch.sigmoid(torch.mm(embedding, transformed_global.view(-1, 1)))

        # representation:图的嵌入(32)
        # 执行:torch.t(embedding) [14,32] =>[32,14]
        # 执行:torch.mm() [32,14] * [14,1] =>[32,1]
        representation = torch.mm(torch.t(embedding), sigmoid_scores)

        return representation
"""
理解attention函数:
根据simgnn论文可得知:

"""
class TensorNetworkModule(nn.Module):
    def __init__(self,args):
        super(TensorNetworkModule,self).__init__()
        self.args = args
        self.setup_weights()
        self.init_parameters()

    def setup_weights(self):
        # tensor_neurons 表示神经元数目
        # 三维张量 M
        self.weight_matrix = nn.Parameter(torch.Tensor(self.args.filters_3, self.args.filters_3, self.args.tensor_neurons))
        # 权重矩阵 V
        self.weight_matrix_block = nn.Parameter(torch.Tensor(self.args.tensor_neurons,2*self.args.filters_3))
        # 偏置向量 b
        self.bias = nn.Parameter(torch.Tensor(self.args.tensor_neurons,1))
    def init_parameters(self):
        nn.init.xavier_uniform_(self.weight_matrix)
        nn.init.xavier_uniform_(self.weight_matrix_block)
        nn.init.xavier_uniform_(self.bias)

    def forward(self,embedding_1,embedding_2):
        # 这一部分实现:h1^T * M * h2
        # embedding_1 = [32,1] 经转置=> [1,32]
        # M = [32,32,16]
        # scoring = [1,32] * [32,512] = [1,512]
        scoring = torch.mm(torch.t(embedding_1),self.weight_matrix.view(self.args.filters_3,-1))
        # scoring = [32,16]
        scoring = scoring.view(self.args.filters_3,self.args.tensor_neurons) # shape=[32,16]
        # scoring = [16,1]
        scoring = torch.mm(torch.t(scoring),embedding_2) # shape = [16,1]
        # 就是论文中将两个嵌入向量叠加起来
        combined_representation = torch.cat((embedding_1,embedding_2))
        # V*[]
        block_scoring = torch.mm(self.weight_matrix_block,combined_representation)

        scores = F.relu(scoring + block_scoring +self.bias)

        return scores

"""
理解这一部分张量网络:
根据SimGNN论文中的公式:
假设embedding_1 和 embedding_2 都为 [32,1],self.args.filters_3=32,self.args.tensor_neurons=16
可得: self.weight_matrix = [32,32,16]
      self.weight_matrix_block = [16,64]
      self.bias = [16,1]
问题一:M 为啥是三维的权重矩阵呢?
例子中的M是[32,32,16] 表示k = 16个32*32的矩阵
"""
class SimGNN(nn.Module):
    def __init__(self,args,num_nodes_id):
        super(SimGNN,self).__init__()
        self.args = args

        self.num_nodes_id = num_nodes_id
        self.setup_layers()

    # 是否使用直方图
    def calculate_bottleneck_features(self):
        if self.args.histogram == True:
            self.feature_count = self.args.tensor_neurons + self.args.bins
        else:
            self.feature_count = self.args.tensor_neurons
    def setup_layers(self):
        self.calculate_bottleneck_features()
        self.convolution_1 = GCNConv(self.num_nodes_id,self.args.filters_1)
        self.convolution_2 = GCNConv(self.args.filters_1,self.args.filters_2)
        self.convolution_3 = GCNConv(self.args.filters_2,self.args.filters_3)

        self.attention = AttentionModule(self.args)


        self.tensor_network = TensorNetworkModule(self.args)

        self.fully_connected_first = nn.Linear(self.feature_count,self.args.bottle_neck_neurons)
        self.scoring_layer = nn.Linear(self.args.bottle_neck_neurons,1)

    def calculate_histogram(self,abstract_features_1, abstract_features_2):
        """
        理解calculate_histogram函数:
        作用:用于计算节点特征的直方图,用于衡量图之间的相似性。
        """
        # abstract_features_1:(num_nodes1, num_features=32)
        # abstract_features_2:(num_features=32, num_nodes2) 这里是完成转置了
        # 执行torch.mm 后得到 相似性得分矩阵。
        scores = torch.mm(abstract_features_1, abstract_features_2).detach()
        scores = scores.view(-1, 1)
        # 计算直方图,将得分分为 bins 个区间。
        # 例如 bins为 8,hist = tensor([4., 3., 1., 0., 0., 2., 1., 1.])
        hist = torch.histc(scores, bins=self.args.bins)  # 统计得分在每个区间的个数
        # hist = tensor([0.3333, 0.2500, 0.0833, 0.0000, 0.0000, 0.1667, 0.0833, 0.0833])
        hist = hist / torch.sum(hist)  # 归一化
        hist = hist.view(1, -1)

        return hist

    def convolutional_pass(self, edge_index, features):
        features = self.convolution_1(features, edge_index)
        features = F.relu(features)
        features = F.dropout(features, p=self.args.dropout, training=self.training)
        features = self.convolution_2(features, edge_index)
        features = F.relu(features)
        features = F.dropout(features, p=self.args.dropout, training=self.training)
        features = self.convolution_3(features, edge_index)
        return features

    def forward(self, data):
        # 获取图 1 的邻接矩阵
        edge_index_1 = data["edge_index_1"]
        # 获取图 2 的邻接矩阵
        edge_index_2 = data["edge_index_2"]
        # 获取图 1 的特征(独热编码)
        features_1 = data["features_1"]  # (num_nodes1, num_features=16)
        features_2 = data["features_2"]  # (num_nodes2, num_features=16)
        # (num_nodes1, num_features=16) ——> (num_nodes1, num_features=32)
        abstract_features_1 = self.convolutional_pass(edge_index_1,features_1)
        # (num_nodes2, num_features=16) ——> (num_nodes2, num_features=32)
        abstract_features_2 = self.convolutional_pass(edge_index_2,features_2)

        # 直方图
        if self.args.histogram == True:
            hist = self.calculate_histogram(abstract_features_1, torch.t(abstract_features_2))
        # 池化
        pooled_features_1 = self.attention(abstract_features_1)  # (num_nodes1, num_features=32) ——> (num_features=32)
        pooled_features_2 = self.attention(abstract_features_2)  # (num_nodes2, num_features=32) ——> (num_features=32)
        # NTN模型
        scores = self.tensor_network(pooled_features_1, pooled_features_2)
        scores = torch.t(scores)

        if self.args.histogram == True:
            scores = torch.cat((scores, hist), dim=1).view(1, -1)

        scores = F.relu(self.fully_connected_first(scores))
        score = torch.sigmoid(self.scoring_layer(scores))

        return score
def exp_init():
    """实验初始化"""
    if not os.path.exists('outputs'):
        os.mkdir('outputs')
    if not os.path.exists('outputs/' + args.exp_name):
        os.mkdir('outputs/' + args.exp_name)

    # 跟踪执行脚本,windows下使用copy命令,且使用双引号
    os.system(f"copy main.py outputs\\{args.exp_name}\\main.py.backup")
    os.system(f"copy data.py outputs\\{args.exp_name}\\data.py.backup")
    os.system(f"copy model.py outputs\\{args.exp_name}\\model.py.backup")
    os.system(f"copy parameter.py outputs\\{args.exp_name}\\parameter.py.backup")

def train(args, IO, train_dataset, num_nodes_id):
    # 使用GPU or CPU
    device = torch.device('cpu' if args.gpu_index < 0 else 'cuda:{}'.format(args.gpu_index))
    if args.gpu_index < 0:
        IO.cprint('Using CPU')
    else:
        IO.cprint('Using GPU: {}'.format(args.gpu_index))
        torch.cuda.manual_seed(args.seed)  # 设置PyTorch GPU随机种子

    # 加载模型及参数量统计
    model = SimGNN(args, num_nodes_id).to(device)
    IO.cprint(str(model))
    total_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
    IO.cprint('Model Parameter: {}'.format(total_params))

    # 优化器
    optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
    IO.cprint('Using Adam')

    epochs = trange(args.epochs, leave=True, desc="Epoch")

    for epoch in epochs:

        random.shuffle(train_dataset)
        train_batches = []
        for graph in range(0, len(train_dataset), 16):
            train_batches.append(train_dataset[graph:graph + 16])

        loss_epoch = 0 # 一个epoch,所有样本损失

        for index, batch in tqdm(enumerate(train_batches), total=len(train_batches), desc="Train_Batches"):
            optimizer.zero_grad()

            loss_batch = 0 # 一个batch,样本损失

            for data in batch:
                # 数据变成GPU支持的数据类型
                data["edge_index_1"], data["edge_index_2"] = data["edge_index_1"].to(device), data["edge_index_2"].to(device)
                data["features_1"], data["features_2"] = data["features_1"].to(device), data["features_2"].to(device)

                prediction = model(data)
                loss_batch = loss_batch + F.mse_loss(data["target"], prediction.cpu())

            loss_epoch = loss_epoch + loss_batch.item()

            loss_batch.backward()
            optimizer.step()

        IO.cprint('Epoch #{}, Train_Loss: {:.6f}'.format(epoch, loss_epoch/len(train_dataset)))

    torch.save(model, 'outputs/%s/model.pth' % args.exp_name)
    IO.cprint('The current best model is saved in: {}'.format('******** outputs/%s/model.pth *********' % args.exp_name))


def test(args, IO, test_dataset):
    """测试模型"""
    device = torch.device('cpu' if args.gpu_index < 0 else 'cuda:{}'.format(args.gpu_index))

    # 输出内容保存在之前的训练日志里
    IO.cprint('********** TEST START **********')
    IO.cprint('Reload Best Model')
    IO.cprint('The current best model is saved in: {}'.format('******** outputs/%s/model.pth *********' % args.exp_name))

    model = torch.load('outputs/%s/model.pth' % args.exp_name).to(device)
    #model = model.eval()  # 创建一个新的评估模式的模型对象,不覆盖原模型

    ground_truth = [] # 存放data["norm_ged"]
    scores = [] # 存放模型预测与ground_truth的损失

    for data in test_dataset:
        data["edge_index_1"], data["edge_index_2"] = data["edge_index_1"].to(device), data["edge_index_2"].to(device)
        data["features_1"], data["features_2"] = data["features_1"].to(device), data["features_2"].to(device)

        prediction = model(data)

        scores.append((-math.log(prediction.item()) - data["norm_ged"]) ** 2) # MSELoss
        ground_truth.append(data["norm_ged"])

    model_error = np.mean(scores)

    norm_ged_mean = np.mean(ground_truth)
    baseline_error = np.mean([(gt - norm_ged_mean) ** 2 for gt in ground_truth])
    IO.cprint('Baseline_Error: {:.6f}, Model_Test_Error: {:.6f}'.format(baseline_error, model_error))



args = parameter_parser()
random.seed(args.seed)  # 设置Python随机种子
torch.manual_seed(args.seed)  # 设置PyTorch随机种子
exp_init()

IO = IOStream('outputs/' + args.exp_name + '/run.log')
IO.cprint(str(table_printer(args)))  # 参数可视化

train_dataset, test_dataset, num_nodes_id = load_dataset()

train(args, IO, train_dataset, num_nodes_id)
test(args, IO, test_dataset)

感谢B站的各位老师,不过训练部分的代码还没看,明天吧!

;