Bootstrap

Java高并发解决方案 高并发解决思路与手段

知识点

线程安全,线程封闭,线程调度,同步容器,并发容器,AQS,J.U.C,等等

高并发解决思路与手段

扩容:水平扩容、垂直扩容

缓存:Redis、Memcache、GuavaCache等

队列:Kafka、RabitMQ、RocketMQ等

应用拆分:服务化Dubbo与微服务Spring Cloud

限流:Guava RateLimiter使用、常用限流算法、自己实现分布式限流等

服务降级与服务熔断:服务降级的多重选择、Hystrix

数据库切库,分库分表:切库、分表、多数据源

高可用的一些手段:任务调度分布式elastic-job、主备curator的实现、监控报警机制

基础知识与核心知识准备

并发高并发相关概念

cpu多级缓存:缓存一致,乱序执行优化

java内存模型:JMM规定,抽象结构,同步操作与规则

并发优势与风险

并发模拟:Postman,Jmeter,Apache Bench,代码

并发基本概念

同时拥有两个或多个线程,如果程序在单核处理器上运行,多个线程将交替的换入或者换出内存,这些线程是同时“存在”的,每个线程都处于执行过程中的某个状态,如果运行在多核处理器上,此时,程序中的每个线程都将分配到一个处理器核上,因此可以同时运行。

高并发基本概念

高并发(High Concurrency)是互联网分布式系统架构设计中必须考虑的因素之一,它通常是指,通过设计保证系统能够同时并行处理很多请求。

并发:多个线程操作相同的资源,保证线程安全,合理使用资源

高并发:服务能同时处理很多请求,提高程序性能(更多的考虑技术手段)

知识技能

总体架构:Spring Boot、Maven、JDK8、MySQL

基础组件:Mybatis、Guava、Lombok、Redis、Kafka

高级组件:Joda-Time、Atomic包、J.U.C、AQS、ThreadLocal、RateLimiter、Hystrix、ThreadPool、Shardbatis、curator、elastic-job等

基础知识

cpu多级缓存

主存和cpu通过主线连接,CPU缓存在主存和CPU之间,缓存的出现可以减少CPU读取共享主存的次数

为什么需要CPU cache:CPU的频率太快了,快到主存跟不上,这样在处理器时钟周期内,CPU常常需要等待主存,浪费资源。所以cache的出现,是为了缓解CPU和内存之间速度不匹配问题(结构:cpu -> cache -> memery).

CPU cache有什么意义:

1)时间局部性:如果某个数据被访问,name在不久的将来它很可能被再次访问。

2)空间局部性:如果某个数据被访问,那么与它相邻的数据很快也可能被访问

CPU多级缓存-缓存一致性(MESI)

MESI分别代表cache数据的四种状态,这四种状态可以相互转换

缓存四种操作:local read、local write、remote read、remote write

CPU多级缓存-乱序执行优化

在多核处理器上回出现问题

java内存模型(java memory model,JMM)

java内存模型-同步八种操作

lock(锁定):作用于主内存的变量,把一个变量标识为一条线程独占状态

unlock(解锁):作用于主内存变脸个,把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定

read(读取):作用于主内存变量,把一个变量值从主内存传输到线程的工作内存中,以便随后的load动作使用

load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中

use(使用):作用于工作内存的变量,把工作内存中的一个变量值传递给执行引擎

assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋值给工作内存的变量

store(存储):作用于工作内存的变量,把工作内存中的一个变量的值传送到主内存中,以遍随后的write的操作

write(写入):作用于主内存的变量,它把store操作从工作内存中的一个变量的值传送到主内存的变量中

java内存模型-同步规则

  1. 如果要把一个变量从主内存中复制到工作内存,就需要按顺序的执行read和load操作,如果把变量从工作内存中同步回主内存,就需要按顺序的执行store和write操作。但java内存模型只要求上述操作必须按顺序执行,而没有保证必须是连续执行
  2. 不允许read和load、store和write操作之一单独出现
  3. 不允许一个线程丢弃它的最近assign的操作,即变量在工作内存中改变了之后必须同步到主内存中
  4. 不允许一个线程无原因的(没发生过任何assign操作)把数据从工作内存同步回主内存中
  5. 一个新的变量只能在主内存中诞生,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量。即就是对一个变量实施use和store操作之前,必须先执行过了assign和load操作
  6. 一个变量在同一时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。lock和unlock必须成对出现
  7. 如果对一个变量执行lock操作,将会清空工作内存中此变量的值,在执行引擎使用这个变量之前需要重新执行load或assign操作初始化变量的值
  8. 如果一个变量实现没有被lock操作锁定,怎不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定的变量
  9. 对一个变量执行unlock操作之前,必须先把此变量同步到主内存中(执行store和write操作)

并发的优势与风险

优势

速度:同时处理多个请求,响应更快;复杂的操作可以分成多个进程同时进行

设计:程序设计在某些情况下更简单,也可以更多的选择

资源利用:CPU能够在等待IO的时候做一些其他的事情

风险

安全性:多个线程共享数据时可能会产生于期望不相符的结果

活跃性:某个操作无法继续进行下去时,就会发生活跃性问题。比如死锁、饥饿等问题

性能:线程过多时会使得CPU频繁切换,调度时间增多;同步机制;消耗过多内存

 

线程安全性

定义:当多个线程访问某个类时,不管运行时环境采用何种调度方式或者这些线程将如何交替执行,并且在主调代码中不需要任何额外的同步或协同,这个类都能表现出正确的行为,那么就称这个类时线程

;