目录
0. 前言
- 课程全部代码(pytorch版)已上传到附件
- 看懂上一篇RNN的所有细节,这里的GRU、后面的LSTM甚至注意力机制都能容易理解,因为RNN是一切序列模型的基础
- 本章节为原书第9章(现代循环网络),共分为8节,本篇是第1节:门控循环单元 GRU
- 本节的代码位置为:chapter_recurrent-modern/gru.ipynb
- 本节的视频链接:56 门控循环单元(GRU)【动手学深度学习v2】_哔哩哔哩_bilibili
在一个序列中:
在 :numref:sec_bptt
中, 我们讨论了如何在循环神经网络中计算梯度, 以及矩阵连续乘积可以导致梯度消失或梯度爆炸的问题。 下面我们简单思考一下这种梯度异常在实践中的意义:
- 我们可能会遇到这样的情况:早期观测值对预测所有未来观测值具有非常重要的意义。 考虑一个极端情况,其中第一个观测值包含一个校验和, 目标是在序列的末尾辨别校验和是否正确。 在这种情况下,第一个词元的影响至关重要。 我们希望有某些机制能够在一个记忆元里存储重要的早期信息。 如果没有这样的机制,我们将不得不给这个观测值指定一个非常大的梯度, 因为它会影响所有后续的观测值。
- 我们可能会遇到这样的情况:一些词元没有相关的观测值。 例如,在对网页内容进行情感分析时, 可能有一些辅助HTML代码与网页传达的情绪无关。 我们希望有一些机制来跳过隐状态表示中的此类词元。
- 我们可能会遇到这样的情况:序列的各个部分之间存在逻辑中断。 例如,书的章节之间可能会有过渡存在, 或者证券的熊市和牛市之间可能会有过渡存在。 在这种情况下,最好有一种方法来重置我们的内部状态表示。
在学术界已经提出了许多方法来解决这类问题。 其中最早的方法是"长短期记忆"(long-short-term memory,LSTM) :cite:Hochreiter.Schmidhuber.1997
, 我们将在 :numref:sec_lstm
中讨论。 门控循环单元(gated recurrent unit,GRU) :cite:Cho.Van-Merrienboer.Bahdanau.ea.2014
是一个稍微简化的变体,通常能够提供同等的效果, 并且计算 :cite:Chung.Gulcehre.Cho.ea.2014
的速度明显更快。 由于门控循环单元更简单,我们从它开始解读。
1. 门控隐状态
门控循环单元与普通的循环神经网络之间的关键区别在于: 前者支持隐状态的门控。 这意味着模型有专门的机制来确定应该何时更新隐状态, 以及应该何时重置隐状态。 这些机制是可学习的,并且能够解决了上面列出的问题。 例如,如果第一个词元非常重要, 模型将学会在第一次观测之后不更新隐状态。 同样,模型也可以学会跳过不相关的临时观测。 最后,模型还将学会在需要的时候重置隐状态。 下面我们将详细讨论各类门控。
1.1 重置门和更新门
我们首先介绍重置门(reset gate)和更新门(update gate)。 我们把它们设计成(0,1)区间中的向量, 这样我们就可以进行凸组合(权重向量的每个元素非负且和为1)。 重置门允许我们控制“可能还想记住”的过去状态的数量; 更新门将允许我们控制新状态中有多少个是旧状态的副本。
我们从构造这些门控开始。 :numref:fig_gru_1
描述了门控循环单元中的重置门和更新门的输入, 输入是由当前时间步的输入和前一时间步的隐状态给出。 两个门的输出是由使用sigmoid激活函数的两个全连接层给出。
:label:fig_gru_1
1.2 候选隐状态
:numref:fig_gru_2
说明了应用重置门之后的计算流程。
:label:fig_gru_2
1.3 隐状态
些设计可以帮助我们处理循环神经网络中的梯度消失问题, 并更好地捕获时间步距离很长的序列的依赖关系。 例如,如果整个子序列的所有时间步的更新门都接近于1, 则无论序列的长度如何,在序列起始时间步的旧隐状态都将很容易保留并传递到序列结束。
:numref:fig_gru_3
说明了更新门起作用后的计算流。
:label:fig_gru_3
总之,门控循环单元具有以下两个显著特征:
- 重置门有助于捕获序列中的短期依赖关系;
- 更新门有助于捕获序列中的长期依赖关系。
2. 从零开始实现
为了更好地理解门控循环单元模型,我们从零开始实现它。 首先,我们读取 :numref:sec_rnn_scratch
中使用的时间机器数据集:
In [1]:
import torch
from torch import nn
from d2l import torch as d2l
batch_size, num_steps = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_steps)
2.1 初始化模型参数
下一步是初始化模型参数。 我们从标准差为0.01的高斯分布中提取权重, 并将偏置项设为0,超参数num_hiddens
定义隐藏单元的数量, 实例化与更新门、重置门、候选隐状态和输出层相关的所有权重和偏置。
In [2]:
def get_params(vocab_size, num_hiddens, device): # 不去复习RNN从零实现,后面不太好看懂,函数都在那里定义
num_inputs = num_outputs = vocab_size # 和RNN类似,用了独热编码后,输入和输出都是词表大小,多分类问题
def normal(shape):
return torch.randn(size=shape, device=device)*0.01 # 和RNN类似,均值0方差1初始化后,缩放为0.01
def three(): # 由于三个公式结构差不多,对应位置参数的形状都一样;封装成函数减少重复代码,更优雅
return (normal((num_inputs, num_hiddens)), # W_x_学习参数的形状(词表大小,隐层数)
normal((num_hiddens, num_hiddens)), # W_h_形状(隐层数,隐层数)
torch.zeros(num_hiddens, device=device)) # b__的形状(隐层数,)
# 回看上面的公式
W_xz, W_hz, b_z = three() # 更新门参数
W_xr, W_hr, b_r = three() # 重置门参数
W_xh, W_hh, b_h = three() # 候选隐状态参数
# 输出层参数
W_hq = normal((num_hiddens, num_outputs))
b_q = torch.zeros(num_outputs, device=device)
# 附加梯度 # GRU多了前6个参数,作为对比,RNN只有“W_xh, W_hh, b_h, W_hq, b_q”后面这5个参数
params = [W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q]
for param in params:
param.requires_grad_(True) # 把params中每个可学习参数的"是否计算grad"的属性设为True
return params
2.2 定义模型
现在我们将[定义隐状态的初始化函数]init_gru_state
。 与 :numref:sec_rnn_scratch
中定义的init_rnn_state
函数一样, 此函数返回一个形状为(批量大小,隐藏单元个数)的张量,张量的值全部为零。
In [3]:
def init_gru_state(batch_size, num_hiddens, device): # 隐藏状态初始化,和RNN没区别
return (torch.zeros((batch_size, num_hiddens), device=device), )
现在我们准备[定义门控循环单元模型], 模型的架构与基本的循环神经网络单元是相同的, 只是权重更新公式更为复杂。
In [4]:
def gru(inputs, state, params): # 每个batch的前向传播,类似于rnn()
W_xz, W_hz, b_z, W_xr, W_hr, b_r, W_xh, W_hh, b_h, W_hq, b_q = params
H, = state # 传入的隐状态
outputs = []
# inputs的形状:(时间步数量,批量大小,词表大小); 是3d的tensor,到这里时input已经做了转置,时间步数维提前
for X in inputs: # 每次拿一个时间步出来,X形状:(批量大小,词表大小)
# “X @ W_xz”约等于“torch.mm(X, W_xz)”做矩阵乘法,但torch.mm只能做2d的,@可以基于PyTorch广播到高维
# CNN用的是tanh()激活函数,GRU用的是sigmoid()激活,都是对输出的隐藏表示进行归一化
Z = torch.sigmoid((X @ W_xz) + (H @ W_hz) + b_z) # “+ b_z”用到广播机制
R = torch.sigmoid((X @ W_xr) + (H @ W_hr) + b_r) # W_x_,W_h_和b__的形状在three()函数里有定义
H_tilda = torch.tanh((X @ W_xh) + ((R * H) @ W_hh) + b_h) # 候选隐状态参数; *是元素相乘(Hadamard积)
H = Z * H + (1 - Z) * H_tilda # 最终的隐状态更新
Y = H @ W_hq + b_q # 输出函数
outputs.append(Y) # 拼接每个时间步的输出成list
return torch.cat(outputs, dim=0), (H,) # 隐藏状态做成tuple,为的是后面LSTM有两个隐藏状态H
2.3 训练与预测
训练和预测的工作方式与 :numref:sec_rnn_scratch
完全相同。 训练结束后,我们分别打印输出训练集的困惑度, 以及前缀“time traveler”和“traveler”的预测序列上的困惑度。
In [5]:
vocab_size, num_hiddens, device = len(vocab), 256, d2l.try_gpu()
num_epochs, lr = 500, 1
model = d2l.RNNModelScratch(len(vocab), num_hiddens, device, get_params,
init_gru_state, gru) # RNNModelScratch()类很泛用,改一后三个输入就是GRU啦
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
perplexity 1.1, 31198.0 tokens/sec on cuda:0 time traveller for so it will be convenient to speak of himwas e travelleryou can show black is white by argument said filby
3 简洁实现
高级API包含了前文介绍的所有配置细节, 所以我们可以直接实例化门控循环单元模型。 这段代码的运行速度要快得多, 因为它使用的是编译好的运算符而不是Python来处理之前阐述的许多细节。
In [6]:
num_inputs = vocab_size
gru_layer = nn.GRU(num_inputs, num_hiddens) # pytorch框架里直接掉包,使用GRU类
model = d2l.RNNModel(gru_layer, len(vocab)) # 从零实现的代码,也能兼容pytorch框架(简洁实现)
model = model.to(device)
d2l.train_ch8(model, train_iter, vocab, lr, num_epochs, device)
# 看结果,用框架比从零实现快了9倍,因为这GRU从零实现的小矩阵乘法更多
perplexity 1.0, 271470.1 tokens/sec on cuda:0 time travelleryou can show black is white by argument said filby travelleryou can show black is white by argument said filby
4. 小结
- 门控循环神经网络可以更好地捕获时间步距离很长的序列上的依赖关系。
- 重置门有助于捕获序列中的短期依赖关系。
- 更新门有助于捕获序列中的长期依赖关系。
- 重置门打开时,门控循环单元包含基本循环神经网络;更新门打开时,门控循环单元可以跳过子序列。