使用迁移学习,修改ConvNeXt-T网络,对特征进行融合
import torch
import torch.nn as nn
import torchvision.models as models
class CustomConvNeXtT(nn.Module):
def __init__(self, in_channels=3, num_classes=2, chunk=2, csv_shape=107, CSV=True):
super(CustomConvNeXtT, self).__init__()
self.chunk = chunk
self.num_classes = num_classes
self.CSV = CSV
# 加载预训练的ConvNeXt-Tiny模型
convnext = models.convnext_tiny(pretrained=True)
# 冻结预训练模型的所有参数
for name, param in convnext.named_parameters():
param.requires_grad = False
# 将修改后的模型赋值给自定义的ConvNeXt-T网络
self.model = convnext
# 修改第一个卷积层的输入通道数
self.model.features[0][0] = nn.Conv2d(in_channels, 96, kernel_size=4, stride=4)
# 获取特征提取器的输出特征维度
num_ftrs = self.model.classifier[2].in_features
# 修改分类头部
self.model.classifier = nn.Sequential(
nn.LayerNorm(num_ftrs * self.chunk + (csv_shape if CSV else 0), eps=1e-6, elementwise_affine=True),
nn.Linear(num_ftrs * self.chunk + (csv_shape if CSV else 0), num_classes)
)
def extract_features(self, x):
x = self.model.features(x)
x = self.model.avgpool(x)
x = torch.flatten(x, 1)
return x
def forward(self, data_DCE, data_T2, csv):
data_DCE = self.extract_features(data_DCE)
data_T2 = self.extract_features(data_T2)
if not self.CSV:
csv = torch.ones_like(csv)
x = torch.cat((data_DCE, data_T2, csv), dim=1)
print(f"Feature size after concatenation: {x.size()}") # 打印特征拼接后的尺寸
output = self.model.classifier(x)
return output
if __name__ == '__main__':
net = CustomConvNeXtT(in_channels=3, num_classes=2, chunk=2, csv_shape=107, CSV=True)
for name, param in net.named_parameters():
print(name, ":", param.requires_grad)
data_DCE = torch.randn(64, 3, 224, 224)
data_T2 = torch.randn(64, 3, 224, 224)
csv = torch.randn(64, 107)
output = net(data_DCE, data_T2, csv)
print("输出特征尺寸:", output.size())