Bootstrap

【LeetCode-129】求根节点到叶节点数字之和

8.13 求根节点到叶节点数字之和

8.13.1 题目描述

给你一个二叉树的根节点 root ,树中每个节点都存放有一个 0 到 9 之间的数字。
每条从根节点到叶节点的路径都代表一个数字:

  • 例如,从根节点到叶节点的路径 1 -> 2 -> 3 表示数字 123 。

计算从根节点到叶节点生成的 所有数字之和 。

叶节点 是指没有子节点的节点。

在这里插入图片描述
在这里插入图片描述

前言

这道题中,二叉树的每条从根节点到叶子节点的路径都代表一个数字。其实,每个节点都对应一个数字,等于其父节点对应的数字乘以 10 再加上该节点的值(这里假设根节点的父节点对应的数字是 0)。只要计算出每个叶子节点对应的数字,然后计算所有叶子节点对应的数字之和,即可得到结果。可以通过深度优先搜索和广度优先搜索实现。

8.13.2 方法一:深度优先搜索

思路与算法

深度优先搜索是很直观的做法。从根节点开始,遍历每个节点,如果遇到叶子节点,则将叶子节点对应的数字加到数字之和。如果当前节点不是叶子节点,则计算其子节点对应的数字,然后对子节点递归遍历。

class Solution {
    public int sumNumbers(TreeNode root) {
        return dfs(root, 0);
    }

    public int dfs(TreeNode root, int prevSum) {
        if (root == null) {
            return 0;
        }
        int sum = prevSum * 10 + root.val;
        if (root.left == null && root.right == null) {
            return sum;
        } else {
            return dfs(root.left, sum) + dfs(root.right, sum);
        }
    }
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是二叉树的节点个数。对每个节点访问一次。
  • 空间复杂度:O(n),其中 n 是二叉树的节点个数。空间复杂度主要取决于递归调用的栈空间,递归栈的深度等于二叉树的高度,最坏情况下,二叉树的高度等于节点个数,空间复杂度为 O(n)。

8.13.3 方法二:广度优先搜索

思路与算法

使用广度优先搜索,需要维护两个队列,分别存储节点和节点对应的数字。

初始时,将根节点和根节点的值分别加入两个队列。每次从两个队列分别取出一个节点和一个数字,进行如下操作:

  • 如果当前节点是叶子节点,则将该节点对应的数字加到数字之和;
  • 如果当前节点不是叶子节点,则获得当前节点的非空子节点,并根据当前节点对应的数字和子节点的值计算子节点对应的数字,然后将子节点和子节点对应的数字分别加入两个队列。

搜索结束后,即可得到所有叶子节点对应的数字之和。

class Solution {
    public int sumNumbers(TreeNode root) {
        if (root == null) {
            return 0;
        }
        int sum = 0;
        Queue<TreeNode> nodeQueue = new LinkedList<TreeNode>();
        Queue<Integer> numQueue = new LinkedList<Integer>();
        nodeQueue.offer(root);
        numQueue.offer(root.val);
        while (!nodeQueue.isEmpty()) {
            TreeNode node = nodeQueue.poll();
            int num = numQueue.poll();
            TreeNode left = node.left, right = node.right;
            if (left == null && right == null) {
                sum += num;
            } else {
                if (left != null) {
                    nodeQueue.offer(left);
                    numQueue.offer(num * 10 + left.val);
                }
                if (right != null) {
                    nodeQueue.offer(right);
                    numQueue.offer(num * 10 + right.val);
                }
            }
        }
        return sum;
    }
}

复杂度分析

  • 时间复杂度:O(n),其中 n 是二叉树的节点个数。对每个节点访问一次。
  • 空间复杂度:O(n),其中 n 是二叉树的节点个数。空间复杂度主要取决于队列,每个队列中的元素个数不会超过 n。

8.13.4 my answer—广度优先搜索

/**
 * Definition for a binary tree node.
 * public class TreeNode {
 *     int val;
 *     TreeNode left;
 *     TreeNode right;
 *     TreeNode() {}
 *     TreeNode(int val) { this.val = val; }
 *     TreeNode(int val, TreeNode left, TreeNode right) {
 *         this.val = val;
 *         this.left = left;
 *         this.right = right;
 *     }
 * }
 */
class Solution {
    public int sumNumbers(TreeNode root) {
        Integer ans = 0;
        List<String> paths = new ArrayList<>();
        if(root == null){
            return 0;
        }
        Queue<TreeNode> nodeQueue = new LinkedList<>();
        Queue<String> pathQueue =  new LinkedList<>();
        nodeQueue.offer(root);
        pathQueue.offer(Integer.toString(root.val));
        while(!nodeQueue.isEmpty()){
            TreeNode node = nodeQueue.poll();
            String path = pathQueue.poll();
            if(node.left == null && node.right == null){
                paths.add(path);
            }else{
                if(node.left != null){
                    nodeQueue.offer(node.left);
                    pathQueue.offer(new StringBuffer(path).append(node.left.val).toString());
                }
                if(node.right != null){
                    nodeQueue.offer(node.right);
                    pathQueue.offer(new StringBuffer(path).append(node.right.val).toString());
                }
            }
        }
        for(int i = 0;i<paths.size();i++){
            ans += Integer.parseInt(paths.get(i));
        }
        return ans;
    }
}
;