Bootstrap

GAN是一种特殊的损失函数?

数据科学家Jeremy Howard在fast.ai的《生成对抗网络(GAN)》课程中曾经讲过这样一句话:

“从本质上来说,生成对抗网络(GAN)是一种特殊的损失函数。”

你是否能够理解这句话的意思?读完本文,你会更好的理解这句话的含义。

神经网络的函数逼近理论

在数学中,我们可以将函数看做一个“机器”或“黑匣子”,我们为这个“机器”或“黑匣子”提供了一个或多个数字作为输入,则会输出一个或多个数字,如下图所示:

一般来说,我们可以用一个数学表达式来表示我们想要的函数。但是,在一些特殊的情况下,我们就没办法将函数写成一堆加法和乘法的明确组合,比如:我们希望拥有这样一个函数,即能够判断输入图像的类别是猫还是狗。

如果不能用明确的用数学表达式来表达这个函数,那么,我们可以用某种方法近似表示吗?

这个近似方法就是神经网络。通用近似定理表明,如果一个前馈神经网络具有线性输出层和至少一层隐藏层,只要给予网络足够数量的神经元,便可以表示任何一个函数。

;