import math import argparse import os import platform import sys from pathlib import Path import numpy as np import torch FILE = Path(__file__).resolve() ROOT = FILE.parents[0] # YOLOv5 root directory if str(ROOT) not in sys.path: sys.path.append(str(ROOT)) # add ROOT to PATH ROOT = Path(os.path.relpath(ROOT, Path.cwd())) # relative from models.common import DetectMultiBackend from utils.augmentations import (Albumentations, augment_hsv, classify_albumentations, classify_transforms, copy_paste, letterbox, mixup, random_perspective) from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2, increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh) from utils.plots import Annotator, colors, save_one_box from utils.torch_utils import select_device, smart_inference_mode def run( weights=ROOT / 'yolov5s.pt', # model path or triton URL source=ROOT / '0', # file/dir/URL/glob/screen/0(webcam) data=ROOT / 'data/balll', # dataset.yaml path imgsz=(640, 640), # inference size (height, width) conf_thres=0.45, # confidence threshold iou_thres=0.5, # NMS IOU threshold max_det=1000, # maximum detections per image device='0', # cuda device, i.e. 0 or 0,1,2,3 or cpu view_img=False, # show results save_txt=False, # save results to *.txt save_conf=False, # save confidences in --save-txt labels save_crop=False, # save cropped prediction boxes nosave=False, # do not save images/videos classes=None, # filter by class: --class 0, or --class 0 2 3 agnostic_nms=True, # class-agnostic NMS augment=False, # augmented inference visualize=False, # visualize features update=False, # update all models project=ROOT / 'runs/detect', # save results to project/name name='exp', # save results to project/name exist_ok=False, # existing project/name ok, do not increment line_thickness=3, # bounding box thickness (pixels) hide_labels=False, # hide labels hide_conf=False, # hide confidences half=False, # use FP16 half-precision inference dnn=False, # use OpenCV DNN for ONNX inference vid_stride=1, # video frame-rate stride ): # Load model device = select_device(device) model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half) stride, names, pt = model.stride, model.names, model.pt imgsz = check_img_size(imgsz, s=stride) # check image size seen, windows, dt = 0, [], (Profile(), Profile(), Profile()) cap = cv2.VideoCapture(0) while True: ret, color_image = cap.read() sources = [source] imgs = [None] path = sources imgs[0] = color_image im0s = imgs.copy() img = [letterbox(x, new_shape=imgsz)[0] for x in im0s] img = np.stack(img, 0) img = img[:, :, :, ::-1].transpose(0, 3, 1, 2) # BGR to RGB, to 3x416x416, uint8 to float32 # img = img.transpose((2, 0, 1))[::-1] img = np.ascontiguousarray(img, dtype=np.float16 if half else np.float32) img /= 255.0 # 0 - 255 to 0.0 - 1.0 # img=change_contrast(img,2) im = torch.from_numpy(img).to(model.device) if len(im.shape) == 3: im = im[None] # expand for batch dim # Inference visualize = False pred = model(im, augment=augment, visualize=visualize) pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det) for i, det in enumerate(pred): # per image p, s, im0 = path[i], '%g: ' % i, im0s[i].copy() s += '%gx%g ' % img.shape[2:] # print string annotator = Annotator(im0, line_width=line_thickness, example=str(names)) # print(len(det)) if len(det): # Rescale boxes from img_size to im0 size det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round() # Print resultssave for c in det[:, 5].unique(): n = (det[:, 5] == c).sum() # detections per class s += f"{n} {names[int(c)]}{'s' * (n > 1)}, " # add to string for *xyxy, conf, cls in reversed(det): mid_pos = [int((int(xyxy[0]) + int(xyxy[2])) / 2), int((int(xyxy[1]) + int(xyxy[3])) / 2)] # 确定索引深度的中心像素位置左上角和右下角相加在/2 c = int(cls) # integer class label = (names[c] if hide_conf else f'{names[c]} {conf:.2f}') annotator.box_label(xyxy, label, color=colors(c, True)) # cv2.putText(im, '.',mid_pos, cv2.FONT_HERSHEY_SIMPLEX, 2, (0,255,0), 3) im0 = annotator.result() cv2.imshow(str(p), im0) cv2.waitKey(1) # 1 millisecond def parse_opt(): parser = argparse.ArgumentParser() parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'weights/yolov5n.pt', help='model path or triton URL') parser.add_argument('--source', type=str, default=ROOT / '0', help='file/dir/URL/glob/screen/0(webcam)') parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path') parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w') parser.add_argument('--conf-thres', type=float, default=0.45, help='confidence threshold') parser.add_argument('--iou-thres', type=float, default=0.5, help='NMS IoU threshold') parser.add_argument('--max-det', type=int, default=100, help='maximum detections per image') parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu') parser.add_argument('--view-img', action='store_true', help='show results') parser.add_argument('--save-txt', action='store_true', help='save results to *.txt') parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels') parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes') parser.add_argument('--nosave', action='store_true', help='do not save images/videos') parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3') parser.add_argument('--agnostic-nms', action='store_true',default=True, help='class-agnostic NMS') parser.add_argument('--augment', action='store_true', help='augmented inference') parser.add_argument('--visualize', action='store_true', help='visualize features') parser.add_argument('--update', action='store_true', help='update all models') parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name') parser.add_argument('--name', default='exp', help='save results to project/name') parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment') parser.add_argument('--line-thickness', default=1, type=int, help='bounding box thickness (pixels)') parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels') parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences') parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference') parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference') parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride') opt = parser.parse_args() opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1 # expand print_args(vars(opt)) return opt def main(opt): check_requirements(exclude=('tensorboard', 'thop')) run(**vars(opt)) if __name__ == '__main__': while True: opt = parse_opt() main(opt)