Bootstrap

bandit算法原理及Python实现

 
  

Bandit算法是在线学习的一种,一切通过数据收集而得到的概率预估任务,都能通过Bandit系列算法来进行在线优化。这里的“在线”,指的不是互联网意义上的线上,而是只算法模型参数根据观察数据不断演变。

以多臂老虎机问题为例,首先我们假设每个臂是否产生收益,其背后有一个概率分布,产生收益的概率为p

我们不断地试验,去估计出一个置信度较高的概率p的概率分布就能近似解决这个问题了。

怎么能估计概率p的概率分布呢? 答案是假设概率p的概率分布符合beta(wins, lose)分布,它有两个参数: wins, lose。

每个臂都维护一个beta分布的参数。每次试验后,选中一个臂,摇一下,有收益则该臂的wins增加1,否则该臂的lose增加1。

初始化beta参数 胜率和败率都为0.5  
  prior_a = 1. # aka successes 
    prior_b = 1. # aka failures
    estimated_beta_params = np.zeros((K,2))
    estimated_beta_params[:,0] += prior_a # allocating the initial conditions
    estimated_beta_params[:,1] += prior_b
beta参数要在后面的计算中不断更新的。

-------------------------------------------------------------------------------------------

对于硬币或者骰子这样的简单实验,我们事先能很准确地掌握系统成功的概率。然而通常情况下,系统成功的概率是未知的。为了测试系统的成功概率p,我们做n次试验,统计成功的次数k,于是很直观地就可以计算出p=

;