一、题目
超级丑数 是一个正整数,并满足其所有质因数都出现在质数数组 primes 中。
给你一个整数 n 和一个整数数组 primes ,返回第 n 个 超级丑数 。
题目数据保证第 n 个 超级丑数 在 32-bit 带符号整数范围内。
示例 1:
输入:n = 12, primes = [2,7,13,19]
输出:32
解释:给定长度为 4 的质数数组 primes = [2,7,13,19],前 12 个超级丑数序列为:[1,2,4,7,8,13,14,16,19,26,28,32] 。
示例 2:
输入:n = 1, primes = [2,3,5]
输出:1
解释:1 不含质因数,因此它的所有质因数都在质数数组 primes = [2,3,5] 中。
提示:
- 1 <= n <= 10^6
- 1 <= primes.length <= 100
- 2 <= primes[i] <= 1000
- 题目数据 保证 primes[i] 是一个质数
- primes 中的所有值都 互不相同 ,且按 递增顺序 排列
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/super-ugly-number
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
二、分析及代码
1. 动态规划
(1)思路
根据定义,每个丑数都由一个较小的丑数和一个 prime 相乘得到,因此可设计一个与 primes 对应的 pointers 数组,记录各个 prime 当前计算下一丑数时指向丑数数组的指针位置。
在此基础上结合动态规划方法求解,每次选取所有 prime 计算得到的最小值,并更新其对应的指针,直至得到第 n 个超级丑数。
(2)代码
class Solution {
public