在tensorflow里提供了计算L1、L2正则化的函数
tf.contrib.layers.l1_regularizer()
tf.contrib.layers.l2_regularizer()
我们给出一个实例,代码引用自《TensorFlow 深度学习算法原理与编程实战》p189
这是一个简易的网络模型,实现了通过集合计算一个4层全连接神经网络带L2正则化损失函数的功能
import tensorflow as tf
import numpy as np
# 定义训练轮次
training_steps = 30000
# 定义输入的数据和对应的标签并在 for 循环里进行填充
data = []
label = []
for i in range(200):
x1 = np.random.uniform(-1, 1)
x2 = np.random.uniform(0, 2)
# 这里对 x1,x2 进行判断,如果产生的点落在半径为1的圆内,则label为0,否则为1
if x1 ** 2 + x2 ** 2 <= 1:
data.append([np.random.normal(x1, 0.1), np.random.normal(x2, 0.1)])
label.append(0)
else:
data.append([np.random.normal(x1, 0.1), np.random.normal(x2, 0.1)])
label.append(1)
# numpy 的 hstack() 函数用于在水平方向将元素堆起来
data = np.hstack(data).reshape(-1, 2)
label = np.hstack(label).reshape(-1, 1)
# 定义完成前向传播的隐层
def hidden_layer(input_tensor, weight1, bias1, weight2, bias2, weight3, bias3):
layer1 = tf.nn.relu(tf.matmul(input_tensor, weight1) + bias1)
layer2 = tf.nn.relu(tf.matmul(layer1, weight2) + bias2)
return tf.matmul(layer2, weight3) + bias3
xs = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
ys = tf.placeholder(tf.float32, shape=(None, 1), name="y-output")
# 定义权重参数和偏置参数
weight1 = tf.Variable(tf.truncated_normal([2, 10], stddev=0.1))
bias1 = tf.Variable(tf.constant(0.1, shape=[10]))
weight2 = tf.Variable(tf.truncated_normal([10, 10], stddev=0.1))
bias2 = tf.Variable(tf.constant(0.1, shape=[10]))
weight3 = tf.Variable(tf.truncated_normal([10, 1], stddev=0.1))
bias3 = tf.Variable(tf.constant(0.1, shape=[1]))
# 计算 data 数组长度
sample_size = len(data)
# 得到隐藏层前向传播结果
y = hidden_layer(xs, weight1, bias1, weight2, bias2, weight3, bias3)
# 定义损失函数
error_loss = tf.reduce_sum(tf.pow(ys-y, 2))
tf.add_to_collection("losses", error_loss)
# 参数L2正则化
regularizer = tf.contrib.layers.l2_regularizer(0.01)
retularization = regularizer(weight1) + regularizer(weight2) + regularizer(weight3)
tf.add_to_collection("losses", retularization)
# get_collection函数获取指定集合中的所有个体,这里是获取所有损失值,并在 add_n() 函数中进行加和运算
loss = tf.add_n(tf.get_collection("losses"))
# 定义一个优化器
train_op = tf.train.AdamOptimizer(0.05).minimize(loss)
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
for i in range(training_steps):
sess.run(train_op, feed_dict={xs: data, ys: label})
# 每迭代 2000次 输出一个loss值
if i % 2000 == 0:
loss_value = sess.run(loss, feed_dict={xs: data, ys: label})
print("After %d steps, mse_loss: %f" %(i, loss_value))
# 运行结果:
After 0 steps, mse_loss: 51.364639
After 2000 steps, mse_loss: 7.050952
After 4000 steps, mse_loss: 4.775972
After 6000 steps, mse_loss: 4.787066
After 8000 steps, mse_loss: 4.931646
After 10000 steps, mse_loss: 4.702201
After 12000 steps, mse_loss: 4.578232
After 14000 steps, mse_loss: 4.605384
After 16000 steps, mse_loss: 5.032600
After 18000 steps, mse_loss: 4.586043
After 20000 steps, mse_loss: 4.606448
After 22000 steps, mse_loss: 4.518520
After 24000 steps, mse_loss: 4.620658
After 26000 steps, mse_loss: 4.713350
After 28000 steps, mse_loss: 4.740762