COUNTER = 0
ALARM_ON = False
定义了 EYE_AR_THRESH。如果眼睛纵横比低于此阈值,我们将开始计算人闭上眼睛的帧数。
如果该人闭上眼睛的帧数超过 EYE_AR_CONSEC_FRAMES,我们将发出警报。
在实验中,我发现 0.3 的 EYE_AR_THRESH 在各种情况下都能很好地工作(尽管您可能需要为自己的应用程序自己调整它)。
我还将 EYE_AR_CONSEC_FRAMES 设置为 48 ,这意味着如果一个人连续闭眼 48 帧,我们将播放警报声。
您可以通过降低 EYE_AR_CONSEC_FRAMES 来使疲劳检测器更敏感——同样,您可以通过增加它来降低疲劳检测器的敏感度。
定义了 COUNTER,即眼睛纵横比低于 EYE_AR_THRESH 的连续帧的总数。
如果 COUNTER 超过 EYE_AR_CONSEC_FRAMES ,那么我们将更新布尔值 ALARM_ON。
dlib 库附带了一个基于定向梯度的人脸检测器的直方图以及一个人脸地标预测器——我们在以下代码块中实例化了这两个:
initialize dlib’s face detector (HOG-based) and then create
the facial landmark predictor
print(“[INFO] loading facial landmark predictor…”)
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(args[“shape_predictor”])
dlib 产生的面部标志是一个可索引的列表,见下图:
因此,要从一组面部标志中提取眼睛区域,我们只需要知道正确的数组切片索引:
grab the indexes of the facial landmarks for the left and
right eye, respectively
(lStart, lEnd) = face_utils.FACIAL_LANDMARKS_IDXS[“left_eye”]
(rStart, rEnd) = face_utils.FACIAL_LANDMARKS_IDXS[“right_eye”]
使用这些索引,我们将能够通过数组切片轻松提取眼睛区域。
我们现在准备启动我们的睡意检测器的核心:
start the video stream thread
print(“[INFO] starting video stream thread…”)
vs = VideoStream(src=args[“webcam”]).start()
time.sleep(1.0)
loop over frames from the video stream
while True:
grab the frame from the threaded video file stream, resize
it, and convert it to grayscale
channels)
frame = vs.read()
frame = imutils.resize(frame, width=450)
gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
detect faces in the grayscale frame
rects = detector(gray, 0)
实例化 VideoStream。
暂停一秒钟,让相机传感器预热。
开始遍历视频流中的帧。
读取下一帧,然后我们通过将其大小调整为 450 像素的宽度并将其转换为灰度进行预处理。
应用 dlib 的人脸检测器来查找和定位图像中的人脸。
下一步是应用面部标志检测来定位面部的每个重要区域:
loop over the face detections
for rect in rects:
determine the facial landmarks for the face region, then
convert the facial landmark (x, y)-coordinates to a NumPy
array
shape = predictor(gray, rect)
shape = face_utils.shape_to_np(shape)
extract the left and right eye coordinates, then use the
coordinates to compute the eye aspect ratio for both eyes
leftEye = shape[lStart:lEnd]
rightEye = shape[rStart:rEnd]
leftEAR = eye_aspect_ratio(leftEye)
rightEAR = eye_aspect_ratio(rightEye)
average the eye aspect ratio together for both eyes
ear = (leftEAR + rightEAR) / 2.0
循环遍历检测到的每个人脸——在我们的实现中(特别与司机睡意有关),我们假设只有一张脸——司机——但我把这个 for 循环留在这里以防万一你想应用多张脸视频的技术。
对于每个检测到的人脸,我们应用 dlib 的面部标志检测器并将结果转换为 NumPy 数组。
使用 NumPy 数组切片,我们可以分别提取左眼和右眼的 (x, y) 坐标。
给定双眼的 (x, y) 坐标,我们然后计算它们的眼睛纵横比。
Soukupová 和 Čech 建议将两个眼睛的纵横比平均在一起以获得更好的估计。
然后,我们可以使用下面的 cv2.drawContours 函数可视化框架上的每个眼睛区域——这在我们尝试调试脚本并希望确保正确检测和定位眼睛时通常很有帮助:
compute the convex hull for the left and right eye, then
visualize each of the eyes
leftEyeHull = cv2.convexHull(leftEye)
rightEyeHull = cv2.convexHull(rightEye)
cv2.drawContours(frame, [leftEyeHull], -1, (0, 255, 0), 1)
cv2.drawContours(frame, [rightEyeHull], -1, (0, 255, 0), 1)
最后,我们现在准备检查视频流中的人是否出现犯困的症状:
check to see if the eye aspect ratio is below the blink
threshold, and if so, increment the blink frame counter
if ear < EYE_AR_THRESH:
COUNTER += 1
if the eyes were closed for a sufficient number of
then sound the alarm
if COUNTER >= EYE_AR_CONSEC_FRAMES:
if the alarm is not on, turn it on
if not ALARM_ON:
ALARM_ON = True
check to see if an alarm file was supplied,
and if so, start a thread to have the alarm
sound played in the background
if args[“alarm”] != “”:
自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。
深知大多数Python工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年Python开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Python开发知识点,真正体系化!
由于文件比较大,这里只是将部分目录大纲截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且后续会持续更新
如果你觉得这些内容对你有帮助,可以添加V获取:vip1024c (备注Python)
现在能在网上找到很多很多的学习资源,有免费的也有收费的,当我拿到1套比较全的学习资源之前,我并没着急去看第1节,我而是去审视这套资源是否值得学习,有时候也会去问一些学长的意见,如果可以之后,我会对这套学习资源做1个学习计划,我的学习计划主要包括规划图和学习进度表。
分享给大家这份我薅到的免费视频资料,质量还不错,大家可以跟着学习
一个人可以走的很快,但一群人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算
人才能走的更远。如果你从事以下工作或对以下感兴趣,欢迎戳这里加入程序员的圈子,让我们一起学习成长!**](https://bbs.csdn.net/forums/4304bb5a486d4c3ab8389e65ecb71ac0)
AI人工智能、Android移动开发、AIGC大模型、C C#、Go语言、Java、Linux运维、云计算、MySQL、PMP、网络安全、Python爬虫、UE5、UI设计、Unity3D、Web前端开发、产品经理、车载开发、大数据、鸿蒙、计算机网络、嵌入式物联网、软件测试、数据结构与算法、音视频开发、Flutter、IOS开发、PHP开发、.NET、安卓逆向、云计算