Bootstrap

AQS 源码阅读

前置知识

volatile:Java的语义 原子性,有序性,可见性

而 Java 是由C语言实现的,所以 C 语言也有其对 volatile 实现。

编译器也会对代码进行优化,而有时候并不是 CPU 导致的问题,因为CPU只是引入了 MQ,MQ的特征是最终一致性,并不会导致不可见,只是晚一点,而 C 语言的 volatile 告诉编译器这段代码不需要优化而已,编译会认为当前字段不需要重新从缓存中获取,这就会导致不可见,这样就获取不到最新值。

抽象类 :AbstractOwnableSynchronizer

exclusiveOwnerThread 当前执行的线程

抽象类 :AbstractQueuedSynchronizer

Node

static final class Node {
    static final Node SHARED = new Node();
    static final Node EXCLUSIVE = null;
    // 取消状态
    static final int CANCELLED =  1;
    // 在等待队列中,被唤醒状态
    static final int SIGNAL    = -1;
    // 该节点当前处于条件队列中。(条件遍历)
    static final int CONDITION = -2;
    // 共享锁,是否被别人唤醒
    static final int PROPAGATE = -3;

  /**
    * Status field, taking on only the values:
    *   SIGNAL:     The successor of this node is (or will soon be)
    *               blocked (via park), so the current node must
    *               unpark its successor when it releases or
    *               cancels. To avoid races, acquire methods must
    *               first indicate they need a signal,
    *               then retry the atomic acquire, and then,
    *               on failure, block.
    *   CANCELLED:  This node is cancelled due to timeout or interrupt.
    *               Nodes never leave this state. In particular,
    *               a thread with cancelled node never again blocks.
    *   CONDITION:  This node is currently on a condition queue.
    *               It will not be used as a sync queue node
    *               until transferred, at which time the status
    *               will be set to 0. (Use of this value here has
    *               nothing to do with the other uses of the
    *               field, but simplifies mechanics.)
    *   PROPAGATE:  A releaseShared should be propagated to other
    *               nodes. This is set (for head node only) in
    *               doReleaseShared to ensure propagation
    *               continues, even if other operations have
    *               since intervened.
    *   0:          None of the above
    *
    * The values are arranged numerically to simplify use.
    * Non-negative values mean that a node doesn't need to
    * signal. So, most code doesn't need to check for particular
    * values, just for sign.
    *
    * The field is initialized to 0 for normal sync nodes, and
    * CONDITION for condition nodes.  It is modified using CAS
    * (or when possible, unconditional volatile writes).
    */
    volatile int waitStatus;

    volatile Node prev;
   /**
     * Link to the successor node that the current node/thread
     * unparks upon release. Assigned during enqueuing, adjusted
     * when bypassing cancelled predecessors, and nulled out (for
     * sake of GC) when dequeued.  The enq operation does not
     * assign next field of a predecessor until after attachment,
     * so seeing a null next field does not necessarily mean that
     * node is at end of queue. However, if a next field appears
     * to be null, we can scan prev's from the tail to
     * double-check.  The next field of cancelled nodes is set to
     * point to the node itself instead of null, to make life
     * easier for isOnSyncQueue.
     */
    volatile Node next;

    /**
     * The thread that enqueued this node.  Initialized on
     * construction and nulled out after use.
     */
    volatile Thread thread;

    /**
     * Link to next node waiting on condition, or the special
     * value SHARED.  Because condition queues are accessed only
     * when holding in exclusive mode, we just need a simple
     * linked queue to hold nodes while they are waiting on
     * conditions. They are then transferred to the queue to
     * re-acquire. And because conditions can only be exclusive,
     * we save a field by using special value to indicate shared
     * mode.
     */
    Node nextWaiter;
}

volatile 支持原子性,有序性,可见性

队列:使用双向链表记录队列

volatile head 头结点

volatile tail 尾结点

volatile state 状态

AQS 提供一个状态让子类自己去实现:如果利用这个状态去自己实现获取资源和释放资源

tryRelease 尝试释放资源

acquire 获取资源

// 尝试获取锁,如果获取锁失败,去添加到队列中区
public final void acquire(int arg) {
    if (!tryAcquire(arg) &&
        acquireQueued(addWaiter(Node.EXCLUSIVE), arg))
    selfInterrupt();
}

tryAcquire 尝试获取资源

// 在抽象模板类中,定义方法,具体如何实现,由子类自行决定
protected boolean tryAcquire(int arg) {
    throw new UnsupportedOperationException();
}

ReentrantLock 互斥锁实现

protected final boolean tryAcquire(int acquires) {
    return nonfairTryAcquire(acquires);
}

public void lock() {
    sync.acquire(1);
}

/**
* Base of synchronization control for this lock. Subclassed
* into fair and nonfair versions below. Uses AQS state to
* represent the number of holds on the lock.
*/
abstract static class Sync extends AbstractQueuedSynchronizer {
    private static final long serialVersionUID = -5179523762034025860L;

    /**
     * Performs non-fair tryLock.  tryAcquire is implemented in
     * subclasses, but both need nonfair try for trylock method.
     */
    @ReservedStackAccess
    final boolean nonfairTryAcquire(int acquires) {
        // 获取当前线程 当前 acquires = 1
        final Thread current = Thread.currentThread();
        // 获取状态
        int c = getState();
        // 如果当前状态是 初始化 抢锁,设置为 1 
        if (c == 0) {
            if (compareAndSetState(0, acquires)) {
                // 设置当前线程独占
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果当前线程是已经独占,锁重入,累加1
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0) // overflow
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }

    @ReservedStackAccess
    protected final boolean tryRelease(int releases) {
        // 释放可重入
        int c = getState() - releases;
        // 如果持有线程 不是当前 线程 则抛出异常
        if (Thread.currentThread() != getExclusiveOwnerThread())
            throw new IllegalMonitorStateException();
        boolean free = false;
        // 如果可重入为 0 则将持有的线程置空,标记为空闲
        if (c == 0) {
            free = true;
            setExclusiveOwnerThread(null);
        }
        // 设置状态
        setState(c);
        return free;
    }

    protected final boolean isHeldExclusively() {
        // While we must in general read state before owner,
        // we don't need to do so to check if current thread is owner
        return getExclusiveOwnerThread() == Thread.currentThread();
    }

    final ConditionObject newCondition() {
        return new ConditionObject();
    }

    // Methods relayed from outer class

    final Thread getOwner() {
        return getState() == 0 ? null : getExclusiveOwnerThread();
    }

    final int getHoldCount() {
        return isHeldExclusively() ? getState() : 0;
    }

    final boolean isLocked() {
        return getState() != 0;
    }

    /**
* Reconstitutes the instance from a stream (that is, deserializes it).
*/
    private void readObject(java.io.ObjectInputStream s)
    throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();
        setState(0); // reset to unlocked state
    }
}

FairSync -> Sync -> AbstractQueuedSynchronizer 公平锁

/**
* Sync object for fair locks
*/
static final class FairSync extends Sync {
    private static final long serialVersionUID = -3000897897090466540L;
    /**
     * Fair version of tryAcquire.  Don't grant access unless
     * recursive call or no waiters or is first.
     */
    // 公平锁,先看队列,有队列去排队。
    @ReservedStackAccess
    protected final boolean tryAcquire(int acquires) {
        final Thread current = Thread.currentThread();
        int c = getState();
        // 如果当前锁无人使用
        if (c == 0) {
        	// 看一下队列中有没有任务,如果没有任务,尝试获取锁,设置当前线程为独占
            if (!hasQueuedPredecessors() &&
                compareAndSetState(0, acquires)) {
                setExclusiveOwnerThread(current);
                return true;
            }
        }
        // 如果当前线程已经独占,可重入
        else if (current == getExclusiveOwnerThread()) {
            int nextc = c + acquires;
            if (nextc < 0)
                throw new Error("Maximum lock count exceeded");
            setState(nextc);
            return true;
        }
        return false;
    }
}

NonfairSync -> Sync -> AbstractQueuedSynchronizer 非公平锁

/**
* Sync object for non-fair locks
*/
static final class NonfairSync extends Sync {
    private static final long serialVersionUID = 7316153563782823691L;
    // 非公平锁直接上来抢独占,如果抢不到进队列
    protected final boolean tryAcquire(int acquires) {
        return nonfairTryAcquire(acquires);
    }
}

ReentrantReadWriteLock 读写锁,读共享,读写,写写互斥

//写锁
public ReentrantReadWriteLock.WriteLock writeLock() { return writerLock; }
//读锁
public ReentrantReadWriteLock.ReadLock  readLock()  { return readerLock; }
/**
 * Synchronization implementation for ReentrantReadWriteLock.
 * Subclassed into fair and nonfair versions.
 */
// 自己实现公平锁与非公平锁,抽象类定义模板
abstract static class Sync extends AbstractQueuedSynchronizer {
    private static final long serialVersionUID = 6317671515068378041L;

    /*
     * Read vs write count extraction constants and functions.
     * Lock state is logically divided into two unsigned shorts:
     * The lower one representing the exclusive (writer) lock hold count,
     * and the upper the shared (reader) hold count.
     */
	// 使用 state 变量,高16位 与 低 16 位区分是 读锁还是写锁,便于CAS
    
    static final int SHARED_SHIFT   = 16;
    static final int SHARED_UNIT    = (1 << SHARED_SHIFT);
    static final int MAX_COUNT      = (1 << SHARED_SHIFT) - 1;
    static final int EXCLUSIVE_MASK = (1 << SHARED_SHIFT) - 1;

    /** Returns the number of shared holds represented in count  */
    static int sharedCount(int c)    { return c >>> SHARED_SHIFT; }
    /** Returns the number of exclusive holds represented in count  */
    static int exclusiveCount(int c) { return c & EXCLUSIVE_MASK; }

    /**
     * A counter for per-thread read hold counts.
     * Maintained as a ThreadLocal; cached in cachedHoldCounter
     */
    static final class HoldCounter {
        int count = 0;
        // Use id, not reference, to avoid garbage retention
        final long tid = getThreadId(Thread.currentThread());
    }

    /**
     * ThreadLocal subclass. Easiest to explicitly define for sake
     * of deserialization mechanics.
     */
    static final class ThreadLocalHoldCounter
        extends ThreadLocal<HoldCounter> {
        public HoldCounter initialValue() {
            return new HoldCounter();
        }
    }

    /**
     * The number of reentrant read locks held by current thread.
     * Initialized only in constructor and readObject.
     * Removed whenever a thread's read hold count drops to 0.
     */
    private transient ThreadLocalHoldCounter readHolds;

    /**
     * The hold count of the last thread to successfully acquire
     * readLock. This saves ThreadLocal lookup in the common case
     * where the next thread to release is the last one to
     * acquire. This is non-volatile since it is just used
     * as a heuristic, and would be great for threads to cache.
     *
     * <p>Can outlive the Thread for which it is caching the read
     * hold count, but avoids garbage retention by not retaining a
     * reference to the Thread.
     *
     * <p>Accessed via a benign data race; relies on the memory
     * model's final field and out-of-thin-air guarantees.
     */
    private transient HoldCounter cachedHoldCounter;

    /**
     * firstReader is the first thread to have acquired the read lock.
     * firstReaderHoldCount is firstReader's hold count.
     *
     * <p>More precisely, firstReader is the unique thread that last
     * changed the shared count from 0 to 1, and has not released the
     * read lock since then; null if there is no such thread.
     *
     * <p>Cannot cause garbage retention unless the thread terminated
     * without relinquishing its read locks, since tryReleaseShared
     * sets it to null.
     *
     * <p>Accessed via a benign data race; relies on the memory
     * model's out-of-thin-air guarantees for references.
     *
     * <p>This allows tracking of read holds for uncontended read
     * locks to be very cheap.
     */
    private transient Thread firstReader = null;
    private transient int firstReaderHoldCount;

    Sync() {
        readHolds = new ThreadLocalHoldCounter();
        setState(getState()); // ensures visibility of readHolds
    }

    /*
     * Acquires and releases use the same code for fair and
     * nonfair locks, but differ in whether/how they allow barging
     * when queues are non-empty.
     */

    /**
     * Returns true if the current thread, when trying to acquire
     * the read lock, and otherwise eligible to do so, should block
     * because of policy for overtaking other waiting threads.
     */
    abstract boolean readerShouldBlock();

    /**
     * Returns true if the current thread, when trying to acquire
     * the write lock, and otherwise eligible to do so, should block
     * because of policy for overtaking other waiting threads.
     */
    abstract boolean writerShouldBlock();

    /*
     * Note that tryRelease and tryAcquire can be called by
     * Conditions. So it is possible that their arguments contain
     * both read and write holds that are all released during a
     * condition wait and re-established in tryAcquire.
     */
    // 尝试释放锁
    protected final boolean tryRelease(int releases) {
        if (!isHeldExclusively())
            throw new IllegalMonitorStateException();
        // 可重入锁
        int nextc = getState() - releases;
        // 互斥锁是否有人在使用
        // (1 << SHARED_SHIFT) - 1 => 1 << 16 位 - 1
        // 0x0000 0001 => 0x0001 0000 - 1 = 0x0000 ffff
        // 0000 0001 => 1
        // 0001 0000 0000 0000 0000 16 => (1 << 16) 0000 = f
        // 1111 1111 1111 1111 => (1 << 16) - 1
        // 0xffff
        // 说明互斥锁最大可支持 65535
        // 如果没有互斥锁,也即写线程的数量
        boolean free = exclusiveCount(nextc) == 0;
        // 将当前前持有线程置位空
        if (free)
            setExclusiveOwnerThread(null);
        // 将状态更新
        setState(nextc);
        return free;
    }

    // 获取锁,当前方法为互斥锁
    protected final boolean tryAcquire(int acquires) {
        /*
         * Walkthrough:
         * 1. If read count nonzero or write count nonzero
         *    and owner is a different thread, fail.
         * 2. If count would saturate, fail. (This can only
         *    happen if count is already nonzero.)
         * 3. Otherwise, this thread is eligible for lock if
         *    it is either a reentrant acquire or
         *    queue policy allows it. If so, update state
         *    and set owner.
         */
        Thread current = Thread.currentThread();
        int c = getState();
        // 获取写线程的数量
        int w = exclusiveCount(c);
        // 如果不等于 0 ,说明有读线程或者是写线程
        if (c != 0) {
            // (Note: if c != 0 and w == 0 then shared count != 0)
            // 如果没有写线程,但是当前线程不是和管程中持有的线程不一致
            // 说明这里是锁标记是读锁,返回 false,没有写锁不需要抢锁。
            // 读读共享,直接读,写锁获取读锁,也是可以的,锁降级。
            // 如果有写锁,并且当前线程不是管程中占有的线程,放弃抢锁,应当去排队,读写互斥,写写互斥
            if (w == 0 || current != getExclusiveOwnerThread())
                return false;
            // 如果当前写线程数量超过最大值
            // 则抛出异常 MAX_COUNT (1 << 16) - 1 => 65535
            if (w + exclusiveCount(acquires) > MAX_COUNT)
                throw new Error("Maximum lock count exceeded");
            // Reentrant acquire
            // 累加
            setState(c + acquires);
            return true;
        }
        // 判断写锁是否需要去阻塞,公平锁和非公平锁的实现
        // 如果需要去阻塞返回false,如果不需要进队列,去累加,
        // 抢锁成功返回 true 设置管程中的线程为当前线程
        if (writerShouldBlock() ||
            !compareAndSetState(c, c + acquires))
            return false;
        setExclusiveOwnerThread(current);
        return true;
    }

    // 尝试释放共享锁
    protected final boolean tryReleaseShared(int unused) {
        Thread current = Thread.currentThread();
        // firstReader 为一个优化,为了记录当前第一个读线程
        // 如果当前为第一个只需要判断即可,快
        // 因为线程是需要自己获取过多少次锁
        // 所以每个线程的状态都需要自己单独保存,state 变量就无法实现了
        if (firstReader == current) {
            // assert firstReaderHoldCount > 0;
            if (firstReaderHoldCount == 1)
                firstReader = null;
            else
                firstReaderHoldCount--;
        } else {
            // 从缓存中获取
            HoldCounter rh = cachedHoldCounter;
            // 如果缓存为空,从缓存列表中获取
            // 如果缓存不为空,则判断当前线程的Id号是否相同,如果线程号不相同,则还是从缓存列表中获取
            if (rh == null || rh.tid != getThreadId(current))
                rh = readHolds.get();
            // 获取当前线程,锁的数量
            int count = rh.count;
            // 如果是 1 删除,为0 抛出异常
            if (count <= 1) {
                readHolds.remove();
                if (count <= 0)
                    throw unmatchedUnlockException();
            }
            // 减少
            --rh.count;
        }
        for (;;) {
            int c = getState();
            // 共享锁 - 1
            // 因为高 16 为读锁
            // SHARED_UNIT => (1 << SHARED_SHIFT) => 1 0000 0000
            // state - SHARED_UNIT 就是将高16 - 1
            int nextc = c - SHARED_UNIT;
            // CAS 释放 是否读锁为 0 
            if (compareAndSetState(c, nextc))
                // Releasing the read lock has no effect on readers,
                // but it may allow waiting writers to proceed if
                // both read and write locks are now free.
                return nextc == 0;
        }
    }

    private IllegalMonitorStateException unmatchedUnlockException() {
        return new IllegalMonitorStateException(
            "attempt to unlock read lock, not locked by current thread");
    }

    // 尝试获取共享锁
    protected final int tryAcquireShared(int unused) {
        /*
         * Walkthrough:
         * 1. If write lock held by another thread, fail.
         * 2. Otherwise, this thread is eligible for
         *    lock wrt state, so ask if it should block
         *    because of queue policy. If not, try
         *    to grant by CASing state and updating count.
         *    Note that step does not check for reentrant
         *    acquires, which is postponed to full version
         *    to avoid having to check hold count in
         *    the more typical non-reentrant case.
         * 3. If step 2 fails either because thread
         *    apparently not eligible or CAS fails or count
         *    saturated, chain to version with full retry loop.
         */
        Thread current = Thread.currentThread();
        int c = getState();
        // 如果有写锁,并且当前线程和管程中拥有的线程不一致,返回失败
        if (exclusiveCount(c) != 0 &&
            getExclusiveOwnerThread() != current)
            return -1;
        // 获取读锁
        int r = sharedCount(c);
        // 读锁是否需要排队到写锁,读锁是否超出限制,读锁是否可以取锁成功
        if (!readerShouldBlock() &&
            r < MAX_COUNT &&
            compareAndSetState(c, c + SHARED_UNIT)) {
            // 当前线程是第一个读
            // 缓存一个即可
            if (r == 0) {
                firstReader = current;
                firstReaderHoldCount = 1;
            // 如果读列表只有一个,并且当前线程是一个读,累加
            } else if (firstReader == current) {
                firstReaderHoldCount++;
            } else {
                // 如果列表中有多个,则累加
                // 并且缓存设置为当前线程
                HoldCounter rh = cachedHoldCounter;
                if (rh == null || rh.tid != getThreadId(current))
                    cachedHoldCounter = rh = readHolds.get();
                else if (rh.count == 0)
                    readHolds.set(rh);
                rh.count++;
            }
            return 1;
        }
        return fullTryAcquireShared(current);
    }

    /**
     * Full version of acquire for reads, that handles CAS misses
     * and reentrant reads not dealt with in tryAcquireShared.
     */
    // 尝试获取所有的共享锁
    final int fullTryAcquireShared(Thread current) {
        /*
         * This code is in part redundant with that in
         * tryAcquireShared but is simpler overall by not
         * complicating tryAcquireShared with interactions between
         * retries and lazily reading hold counts.
         */
        HoldCounter rh = null;
        for (;;) {
            int c = getState();
            // 如果有互斥锁
            if (exclusiveCount(c) != 0) {
                // 当前线程不是管程中的线程返回
                if (getExclusiveOwnerThread() != current)
                    return -1;
                // else we hold the exclusive lock; blocking here
                // would cause deadlock.
            // 尝试获取读线程,是否会被写线程阻塞,高16位为读锁
            } else if (readerShouldBlock()) {
                // Make sure we're not acquiring read lock reentrantly
                if (firstReader == current) {
                    // assert firstReaderHoldCount > 0;
                } else {
                    if (rh == null) {
                        rh = cachedHoldCounter;
                        if (rh == null || rh.tid != getThreadId(current)) {
                            rh = readHolds.get();
                            if (rh.count == 0)
                                readHolds.remove();
                        }
                    }
                    if (rh.count == 0)
                        return -1;
                }
            }
            // 如果读线程超过范围,报错
            if (sharedCount(c) == MAX_COUNT)
                throw new Error("Maximum lock count exceeded");
            // 读线程累加,缓存读锁
            if (compareAndSetState(c, c + SHARED_UNIT)) {
                if (sharedCount(c) == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
                    if (rh == null)
                        rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                    cachedHoldCounter = rh; // cache for release
                }
                return 1;
            }
        }
    }

    /**
     * Performs tryLock for write, enabling barging in both modes.
     * This is identical in effect to tryAcquire except for lack
     * of calls to writerShouldBlock.
     */
    // 尝试获取写锁
    final boolean tryWriteLock() {
        Thread current = Thread.currentThread();
        // 获取锁状态
        int c = getState();
        if (c != 0) {
            // 获取写锁状态
            int w = exclusiveCount(c);
            // 如果没有写锁,说明有读锁
            // 如果有写锁,看一下管程中的线程是不是自己,如果不是返回 false
            if (w == 0 || current != getExclusiveOwnerThread())
                return false;
            // 判断写锁是否到达最大值
            if (w == MAX_COUNT)
                throw new Error("Maximum lock count exceeded");
        }
        // 获取写锁,成功后将管程独占,返回成功
        if (!compareAndSetState(c, c + 1))
            return false;
        setExclusiveOwnerThread(current);
        return true;
    }

    /**
     * Performs tryLock for read, enabling barging in both modes.
     * This is identical in effect to tryAcquireShared except for
     * lack of calls to readerShouldBlock.
     */
    // 尝试获取读锁
    final boolean tryReadLock() {
        Thread current = Thread.currentThread();
        // 因为读锁是共享锁,队列中都是读的话,需要循环唤醒,直到遇到写线程去排队。
        // 避免写线程饥饿。
        for (;;) {
            // 获取锁状态
            int c = getState();
            // 获取写锁,如果有写锁,直接返回
            if (exclusiveCount(c) != 0 &&
                getExclusiveOwnerThread() != current)
                return false;
            // 获取读锁
            int r = sharedCount(c);
            // 读锁到了最大值,则报错
            if (r == MAX_COUNT)
                throw new Error("Maximum lock count exceeded");
            // 获取读锁。
            if (compareAndSetState(c, c + SHARED_UNIT)) {
                if (r == 0) {
                    firstReader = current;
                    firstReaderHoldCount = 1;
                } else if (firstReader == current) {
                    firstReaderHoldCount++;
                } else {
                    HoldCounter rh = cachedHoldCounter;
                    if (rh == null || rh.tid != getThreadId(current))
                        cachedHoldCounter = rh = readHolds.get();
                    else if (rh.count == 0)
                        readHolds.set(rh);
                    rh.count++;
                }
                return true;
            }
        }
    }

    protected final boolean isHeldExclusively() {
        // While we must in general read state before owner,
        // we don't need to do so to check if current thread is owner
        return getExclusiveOwnerThread() == Thread.currentThread();
    }

    // Methods relayed to outer class

    final ConditionObject newCondition() {
        return new ConditionObject();
    }

    final Thread getOwner() {
        // Must read state before owner to ensure memory consistency
        return ((exclusiveCount(getState()) == 0) ?
                null :
                getExclusiveOwnerThread());
    }

    final int getReadLockCount() {
        return sharedCount(getState());
    }

    final boolean isWriteLocked() {
        return exclusiveCount(getState()) != 0;
    }

    final int getWriteHoldCount() {
        return isHeldExclusively() ? exclusiveCount(getState()) : 0;
    }

    final int getReadHoldCount() {
        if (getReadLockCount() == 0)
            return 0;

        Thread current = Thread.currentThread();
        if (firstReader == current)
            return firstReaderHoldCount;

        HoldCounter rh = cachedHoldCounter;
        if (rh != null && rh.tid == getThreadId(current))
            return rh.count;

        int count = readHolds.get().count;
        if (count == 0) readHolds.remove();
        return count;
    }

    /**
     * Reconstitutes the instance from a stream (that is, deserializes it).
     */
    private void readObject(java.io.ObjectInputStream s)
        throws java.io.IOException, ClassNotFoundException {
        s.defaultReadObject();
        readHolds = new ThreadLocalHoldCounter();
        setState(0); // reset to unlocked state
    }

    final int getCount() { return getState(); }
}

FairSync -> Sync -> AbstractQueuedSynchronizer 公平锁

/**
 * Fair version of Sync
 */
static final class FairSync extends Sync {
    private static final long serialVersionUID = -2274990926593161451L;
    // 写
    final boolean writerShouldBlock() {
        return hasQueuedPredecessors();
    }
    // 读
    final boolean readerShouldBlock() {
        return hasQueuedPredecessors();
    }
}

NonfairSync -> Sync -> AbstractQueuedSynchronizer 非公平锁

/**
 * Nonfair version of Sync
 */
static final class NonfairSync extends Sync {
    private static final long serialVersionUID = -8159625535654395037L;
    // 如果获取写,直接排队
    final boolean writerShouldBlock() {
        return false; // writers can always barge
    }
    // 读锁,去队列中看一下,是否能可以将读全唤醒,直到遇到写锁
    final boolean readerShouldBlock() {
        /* As a heuristic to avoid indefinite writer starvation,
         * block if the thread that momentarily appears to be head
         * of queue, if one exists, is a waiting writer.  This is
         * only a probabilistic effect since a new reader will not
         * block if there is a waiting writer behind other enabled
         * readers that have not yet drained from the queue.
         */
        return apparentlyFirstQueuedIsExclusive();
    }
}

tryRelease 尝试释放资源

@ReservedStackAccess
protected final boolean tryRelease(int releases) {
    int c = getState() - releases;
    // 当释放时,当前线程并不是独占资源的线程,则抛出异常
    if (Thread.currentThread() != getExclusiveOwnerThread())
        throw new IllegalMonitorStateException();
    boolean free = false;
    // 如果可重入锁,为0了,将当前锁置位。
    if (c == 0) {
        free = true;
        setExclusiveOwnerThread(null);
    }
    setState(c);
    return free;
}

release 释放资源

/**
 * Releases in exclusive mode.  Implemented by unblocking one or
 * more threads if {@link #tryRelease} returns true.
 * This method can be used to implement method {@link Lock#unlock}.
 *
 * @param arg the release argument.  This value is conveyed to
 *        {@link #tryRelease} but is otherwise uninterpreted and
 *        can represent anything you like.
 * @return the value returned from {@link #tryRelease}
 */
public final boolean release(int arg) {
	// 尝试释放锁
    if (tryRelease(arg)) {
        Node h = head;
        // 如果头结点不为空,头结点的不是初始值
        if (h != null && h.waitStatus != 0)
            unparkSuccessor(h);
        return true;
    }
    return false;
}

/**
 * Wakes up node's successor, if one exists.
 *
 * @param node the node
 */
private void unparkSuccessor(Node node) {
    /*
     * If status is negative (i.e., possibly needing signal) try
     * to clear in anticipation of signalling.  It is OK if this
     * fails or if status is changed by waiting thread.
     */
    // 如果当前状态是不是取消状态
    int ws = node.waitStatus;
    if (ws < 0)
        compareAndSetWaitStatus(node, ws, 0);

    /*
     * Thread to unpark is held in successor, which is normally
     * just the next node.  But if cancelled or apparently null,
     * traverse backwards from tail to find the actual
     * non-cancelled successor.
     */
    // 当前节点的下一个节点
    Node s = node.next;
    // 下一个节点为空,下一个节点的状态是取消状态
    if (s == null || s.waitStatus > 0) {
        s = null;
        // 从尾部开始查询,找到一个正常状态的节点,让尾结点跳过前面的节点,且不是头结点
        // t 表示前一个节点,t 不为空,t 不是当前节点
        for (Node t = tail; t != null && t != node; t = t.prev)
            if (t.waitStatus <= 0)
                s = t;
    }
    // 如果下一个节点不为空,则将当前节点的线程唤醒
    if (s != null)
        LockSupport.unpark(s.thread);
}

acquireQueued 获取队列

/**
 * Acquires in exclusive uninterruptible mode for thread already in
 * queue. Used by condition wait methods as well as acquire.
 *
 * @param node the node
 * @param arg the acquire argument
 * @return {@code true} if interrupted while waiting
 */
final boolean acquireQueued(final Node node, int arg) {
    try {
        boolean interrupted = false;
        for (;;) {
            // 获取当前节点的前驱节点
            final Node p = node.predecessor();
            // 如果前驱节点是 头结点,尝试获取锁
            // 获取
            if (p == head && tryAcquire(arg)) {
                setHead(node);
                p.next = null; // help GC
                return interrupted;
            }
            // 如果没有获取到锁,将自己改变为可唤醒状态,阻塞并检查中断
            if (shouldParkAfterFailedAcquire(p, node) &&
                parkAndCheckInterrupt())
                interrupted = true;
        }
    } catch (Throwable t) {
        cancelAcquire(node);
        throw t;
    }
}


/**
 * Checks and updates status for a node that failed to acquire.
 * Returns true if thread should block. This is the main signal
 * control in all acquire loops.  Requires that pred == node.prev.
 *
 * @param pred node's predecessor holding status
 * @param node the node
 * @return {@code true} if thread should block
 */
private static boolean shouldParkAfterFailedAcquire(Node pred, Node node) {
    int ws = pred.waitStatus;
    // 如果当前线程处于唤醒状态,直接返回 true
    if (ws == Node.SIGNAL)
        /*
         * This node has already set status asking a release
         * to signal it, so it can safely park.
         */
        return true;
    // 只有取消状态是正数,所以将自己连接到不是取消状态的节点
    if (ws > 0) {
        /*
         * Predecessor was cancelled. Skip over predecessors and
         * indicate retry.
         */
        // 循环处理,前驱节点,不是取消状态
        do {
            node.prev = pred = pred.prev;
        } while (pred.waitStatus > 0);
        pred.next = node;
    } else {
        /*
         * waitStatus must be 0 or PROPAGATE.  Indicate that we
         * need a signal, but don't park yet.  Caller will need to
         * retry to make sure it cannot acquire before parking.
         */
        // 将当前状态设置 为唤醒状态
        pred.compareAndSetWaitStatus(ws, Node.SIGNAL);
    }
    return false;
}

selfInterrupt 中断

    
   /**
     * Convenience method to interrupt current thread. 自我中断
     */
    static void selfInterrupt() {
        Thread.currentThread().interrupt();
    }

cancelAcquire 任务取消

/**
 * Cancels an ongoing attempt to acquire.
 *
 * @param node the node
 */
private void cancelAcquire(Node node) {
    // Ignore if node doesn't exist
    if (node == null)
        return;
    // 将当前线程置空
    node.thread = null;

    // Skip cancelled predecessors
	// 当前节点的前置节点,找到前面节点是不是取消状态,重新连接
    Node pred = node.prev;
    while (pred.waitStatus > 0)
        node.prev = pred = pred.prev;

    // predNext is the apparent node to unsplice. CASes below will
    // fail if not, in which case, we lost race vs another cancel
    // or signal, so no further action is necessary.
    Node predNext = pred.next;

    // Can use unconditional write instead of CAS here.
    // After this atomic step, other Nodes can skip past us.
    // Before, we are free of interference from other threads.
	// 将当前节点设置为取消状态
    node.waitStatus = Node.CANCELLED;

    // If we are the tail, remove ourselves.
	// 当前节点是尾结点,将前一个节点与设置为尾结点
    if (node == tail && compareAndSetTail(node, pred)) {
        // 将前一个节点指向引用取消
        pred.compareAndSetNext(predNext, null);
    } else {
        // If successor needs signal, try to set pred's next-link
        // so it will get one. Otherwise wake it up to propagate.
        int ws;
        // 前一个节点不是头结点
        // 获取前一个节点的状态,如果是唤醒状态,或者状态不是取消状态,并且可以将状态更新为唤醒状态
        // 前一个节点的线程不为空
        if (pred != head &&
            ((ws = pred.waitStatus) == Node.SIGNAL ||
             (ws <= 0 && pred.compareAndSetWaitStatus(ws, Node.SIGNAL))) &&
            pred.thread != null) {
            Node next = node.next;
            // 获取当前节点的下一个节点,下一个节点的状态不是取消状态
            // 将当前节点的下一个节点,挂到当前节点的上一个节点上,线程协助
            if (next != null && next.waitStatus <= 0)
                pred.compareAndSetNext(predNext, next);
        } else {
            unparkSuccessor(node);
        }

        node.next = node; // help GC
    }
}



/**
 * Wakes up node's successor, if one exists.
 * 唤醒节点
 * @param node the node
 */
private void unparkSuccessor(Node node) {
    /*
     * If status is negative (i.e., possibly needing signal) try
     * to clear in anticipation of signalling.  It is OK if this
     * fails or if status is changed by waiting thread.
     */
    // 获取当前节点的状态
    int ws = node.waitStatus;
    // 如果不是取消状态
    if (ws < 0)
        node.compareAndSetWaitStatus(ws, 0);

    /*
     * Thread to unpark is held in successor, which is normally
     * just the next node.  But if cancelled or apparently null,
     * traverse backwards from tail to find the actual
     * non-cancelled successor.
     */
    // 
    Node s = node.next;
    if (s == null || s.waitStatus > 0) {
        s = null;
        for (Node p = tail; p != node && p != null; p = p.prev)
            if (p.waitStatus <= 0)
                s = p;
    }
    if (s != null)
        LockSupport.unpark(s.thread);
}

apparentlyFirstQueuedIsExclusive 队列的头节点的下一个节点是否是互斥锁

/**
 * Returns {@code true} if the apparent first queued thread, if one
 * exists, is waiting in exclusive mode.  If this method returns
 * {@code true}, and the current thread is attempting to acquire in
 * shared mode (that is, this method is invoked from {@link
 * #tryAcquireShared}) then it is guaranteed that the current thread
 * is not the first queued thread.  Used only as a heuristic in
 * ReentrantReadWriteLock.
 */ 
// 当前头结点不为空,并且下一个节点不是空,下一个节点不是共享锁,下一个节点的线程不为空
final boolean apparentlyFirstQueuedIsExclusive() {
    Node h, s;
    return (h = head) != null &&
        (s = h.next)  != null &&
        !s.isShared()         &&
        s.thread != null;
}

悦读

道可道,非常道;名可名,非常名。 无名,天地之始,有名,万物之母。 故常无欲,以观其妙,常有欲,以观其徼。 此两者,同出而异名,同谓之玄,玄之又玄,众妙之门。

;