Bootstrap

R6学习打卡

import torch.nn as nn
import torch.nn.functional as F
import torchvision,torch

import numpy             as np
import pandas            as pd
import seaborn           as sns
from sklearn.model_selection   import train_test_split
import matplotlib.pyplot as plt

plt.rcParams['savefig.dpi'] = 500 #图片像素
plt.rcParams['figure.dpi']  = 500 #分辨率

plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签

import warnings
warnings.filterwarnings("ignore")

# 设置硬件设备,如果有GPU则使用,没有则使用cpu
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

数据导入

DataFrame=pd.read_excel(r'C:\Users\11054\Desktop\kLearning\R6\dia.xls')
DataFrame.head()
卡号性别年龄高密度脂蛋白胆固醇低密度脂蛋白胆固醇极低密度脂蛋白胆固醇甘油三酯总胆固醇脉搏舒张压高血压史尿素氮尿酸肌酐体重检查结果是否糖尿病
0180544210381.252.991.070.645.31838304.99243.35010
1180544220311.151.990.840.503.98856304.72391.04710
2180544230271.292.210.690.604.19736105.87325.75110
3180544240330.932.010.660.843.60836002.40203.24020
4180544250361.172.830.830.734.83856704.09236.84300
# 查看数据是否有缺失值
print('数据缺失值---------------------------------')
print(DataFrame.isnull().sum())
数据缺失值---------------------------------
卡号            0
性别            0
年龄            0
高密度脂蛋白胆固醇     0
低密度脂蛋白胆固醇     0
极低密度脂蛋白胆固醇    0
甘油三酯          0
总胆固醇          0
脉搏            0
舒张压           0
高血压史          0
尿素氮           0
尿酸            0
肌酐            0
体重检查结果        0
是否糖尿病         0
dtype: int64
# 数据分布分析
feature_map = {
    '年龄': '年龄',
    '高密度脂蛋白胆固醇': '高密度脂蛋白胆固醇',
    '低密度脂蛋白胆固醇': '低密度脂蛋白胆固醇',
    '极低密度脂蛋白胆固醇': '极低密度脂蛋白胆固醇',
    '甘油三酯': '甘油三酯',
    '总胆固醇': '总胆固醇',
    '脉搏': '脉搏',
    '舒张压':'舒张压',
    '高血压史':'高血压史',
    '尿素氮':'尿素氮',
    '尿酸':'尿酸',
    '肌酐':'肌酐',
    '体重检查结果':'体重检查结果'
}
plt.figure(figsize=(15, 10))

for i, (col, col_name) in enumerate(feature_map.items(), 1):
    plt.subplot(3, 5, i)
    sns.boxplot(x=DataFrame['是否糖尿病'], y=DataFrame[col])
    plt.title(f'{col_name}的箱线图', fontsize=14)
    plt.ylabel('数值', fontsize=12)
    plt.grid(axis='y', linestyle='--', alpha=0.7)

plt.tight_layout()
plt.show()

请添加图片描述

# 数据集构建
from sklearn.preprocessing import StandardScaler

# '高密度脂蛋白胆固醇'字段与糖尿病负相关,故而在 X 中去掉该字段
X = DataFrame.drop(['卡号','是否糖尿病','高密度脂蛋白胆固醇'],axis=1)
y = DataFrame['是否糖尿病']

# sc_X    = StandardScaler()
# X = sc_X.fit_transform(X)

X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)

train_X, test_X, train_y, test_y = train_test_split(X, y,
                                                    test_size=0.2,
                                                    random_state=1)
train_X.shape, train_y.shape

(torch.Size([804, 13]), torch.Size([804]))
from torch.utils.data import TensorDataset, DataLoader

train_dl = DataLoader(TensorDataset(train_X, train_y),
                      batch_size=64,
                      shuffle=False)

test_dl  = DataLoader(TensorDataset(test_X, test_y),
                      batch_size=64,
                      shuffle=False)
#定义模型
class model_lstm(nn.Module):
    def __init__(self):
        super(model_lstm, self).__init__()
        self.lstm0 = nn.LSTM(input_size=13 ,hidden_size=200,
                             num_layers=1, batch_first=True)

        self.lstm1 = nn.LSTM(input_size=200 ,hidden_size=200,
                             num_layers=1, batch_first=True)
        self.fc0   = nn.Linear(200, 2)

    def forward(self, x):

        out, hidden1 = self.lstm0(x)
        out, _ = self.lstm1(out, hidden1)
        out    = self.fc0(out)
        return out

初始化模型


model = model_lstm().to(device)
print(model)

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-3   # 学习率
lambda1 = lambda epoch:(0.92**(epoch//2))

optimizer = torch.optim.Adam(model.parameters(),lr = learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1) # 选定调整方法
epochs     = 60
model_lstm(
  (lstm0): LSTM(13, 200, batch_first=True)
  (lstm1): LSTM(200, 200, batch_first=True)
  (fc0): Linear(in_features=200, out_features=2, bias=True)
)

定义损失


# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小
    num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率

    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)

        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失

        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新

        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()

    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss
# 测试模型
def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小
    num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)
    test_loss, test_acc = 0, 0

    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for X, y in dataloader:
            X, y = X.to(device), y.to(device)

            # 计算loss
            target_pred = model(X)
            loss        = loss_fn(target_pred, y)

            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == y).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

训练模型


import copy

train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

best_acc = 0.0

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)

    # 更新学习率
    scheduler.step() # 更新学习率——调用官方动态学习率时使用

    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)

    # 保存最佳模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        best_model = copy.deepcopy(model)

    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)

    # 获取当前的学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']

    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss,
                          epoch_test_acc*100, epoch_test_loss, lr))

print('Done. Best test acc: ', best_acc)

Epoch: 1, Train_acc:53.2%, Train_loss:0.699, Test_acc:53.0%, Test_loss:0.722, Lr:1.00E-03
Epoch: 2, Train_acc:56.7%, Train_loss:0.680, Test_acc:53.0%, Test_loss:0.720, Lr:9.20E-04
Epoch: 3, Train_acc:56.3%, Train_loss:0.669, Test_acc:51.5%, Test_loss:0.704, Lr:9.20E-04
Epoch: 4, Train_acc:59.6%, Train_loss:0.647, Test_acc:64.4%, Test_loss:0.671, Lr:8.46E-04
Epoch: 5, Train_acc:64.6%, Train_loss:0.605, Test_acc:63.9%, Test_loss:0.638, Lr:8.46E-04
Epoch: 6, Train_acc:69.8%, Train_loss:0.553, Test_acc:63.9%, Test_loss:0.626, Lr:7.79E-04
Epoch: 7, Train_acc:72.8%, Train_loss:0.512, Test_acc:66.8%, Test_loss:0.605, Lr:7.79E-04
Epoch: 8, Train_acc:76.5%, Train_loss:0.471, Test_acc:68.3%, Test_loss:0.592, Lr:7.16E-04
Epoch: 9, Train_acc:77.0%, Train_loss:0.442, Test_acc:69.3%, Test_loss:0.573, Lr:7.16E-04
Epoch:10, Train_acc:78.7%, Train_loss:0.425, Test_acc:69.8%, Test_loss:0.583, Lr:6.59E-04
Epoch:11, Train_acc:80.8%, Train_loss:0.390, Test_acc:71.3%, Test_loss:0.579, Lr:6.59E-04
Epoch:12, Train_acc:81.7%, Train_loss:0.376, Test_acc:69.3%, Test_loss:0.604, Lr:6.06E-04
Epoch:13, Train_acc:82.0%, Train_loss:0.363, Test_acc:69.3%, Test_loss:0.654, Lr:6.06E-04
Epoch:14, Train_acc:84.6%, Train_loss:0.352, Test_acc:67.8%, Test_loss:0.651, Lr:5.58E-04
Epoch:15, Train_acc:86.7%, Train_loss:0.307, Test_acc:70.3%, Test_loss:0.665, Lr:5.58E-04
Epoch:16, Train_acc:86.8%, Train_loss:0.298, Test_acc:68.3%, Test_loss:0.681, Lr:5.13E-04
Epoch:17, Train_acc:87.9%, Train_loss:0.275, Test_acc:68.8%, Test_loss:0.718, Lr:5.13E-04
Epoch:18, Train_acc:89.4%, Train_loss:0.257, Test_acc:70.3%, Test_loss:0.696, Lr:4.72E-04
Epoch:19, Train_acc:90.4%, Train_loss:0.238, Test_acc:70.8%, Test_loss:0.693, Lr:4.72E-04
Epoch:20, Train_acc:89.9%, Train_loss:0.238, Test_acc:66.3%, Test_loss:0.874, Lr:4.34E-04
Epoch:21, Train_acc:90.0%, Train_loss:0.245, Test_acc:70.3%, Test_loss:0.774, Lr:4.34E-04
Epoch:22, Train_acc:91.7%, Train_loss:0.202, Test_acc:66.3%, Test_loss:0.829, Lr:4.00E-04
Epoch:23, Train_acc:93.5%, Train_loss:0.191, Test_acc:69.8%, Test_loss:0.806, Lr:4.00E-04
Epoch:24, Train_acc:92.4%, Train_loss:0.191, Test_acc:68.3%, Test_loss:0.858, Lr:3.68E-04
Epoch:25, Train_acc:94.0%, Train_loss:0.170, Test_acc:67.8%, Test_loss:0.868, Lr:3.68E-04
Epoch:26, Train_acc:95.0%, Train_loss:0.143, Test_acc:67.3%, Test_loss:0.958, Lr:3.38E-04
Epoch:27, Train_acc:95.0%, Train_loss:0.151, Test_acc:67.3%, Test_loss:0.900, Lr:3.38E-04
Epoch:28, Train_acc:93.9%, Train_loss:0.158, Test_acc:67.8%, Test_loss:0.931, Lr:3.11E-04
Epoch:29, Train_acc:96.0%, Train_loss:0.136, Test_acc:68.8%, Test_loss:0.878, Lr:3.11E-04
Epoch:30, Train_acc:97.6%, Train_loss:0.110, Test_acc:68.8%, Test_loss:0.993, Lr:2.86E-04
Epoch:31, Train_acc:98.3%, Train_loss:0.091, Test_acc:67.8%, Test_loss:1.012, Lr:2.86E-04
Epoch:32, Train_acc:97.6%, Train_loss:0.092, Test_acc:68.3%, Test_loss:1.023, Lr:2.63E-04
Epoch:33, Train_acc:98.3%, Train_loss:0.082, Test_acc:67.3%, Test_loss:1.064, Lr:2.63E-04
Epoch:34, Train_acc:98.3%, Train_loss:0.081, Test_acc:67.3%, Test_loss:1.081, Lr:2.42E-04
Epoch:35, Train_acc:97.9%, Train_loss:0.079, Test_acc:67.3%, Test_loss:1.112, Lr:2.42E-04
Epoch:36, Train_acc:97.8%, Train_loss:0.084, Test_acc:68.8%, Test_loss:1.100, Lr:2.23E-04
Epoch:37, Train_acc:96.4%, Train_loss:0.105, Test_acc:68.3%, Test_loss:1.030, Lr:2.23E-04
Epoch:38, Train_acc:96.9%, Train_loss:0.101, Test_acc:64.9%, Test_loss:1.269, Lr:2.05E-04
Epoch:39, Train_acc:96.3%, Train_loss:0.105, Test_acc:67.3%, Test_loss:1.091, Lr:2.05E-04
Epoch:40, Train_acc:96.8%, Train_loss:0.098, Test_acc:70.8%, Test_loss:1.121, Lr:1.89E-04
Epoch:41, Train_acc:98.6%, Train_loss:0.064, Test_acc:67.3%, Test_loss:1.141, Lr:1.89E-04
Epoch:42, Train_acc:99.4%, Train_loss:0.049, Test_acc:68.3%, Test_loss:1.174, Lr:1.74E-04
Epoch:43, Train_acc:99.6%, Train_loss:0.040, Test_acc:66.8%, Test_loss:1.171, Lr:1.74E-04
Epoch:44, Train_acc:99.9%, Train_loss:0.036, Test_acc:67.3%, Test_loss:1.189, Lr:1.60E-04
Epoch:45, Train_acc:99.9%, Train_loss:0.032, Test_acc:66.3%, Test_loss:1.218, Lr:1.60E-04
Epoch:46, Train_acc:99.9%, Train_loss:0.030, Test_acc:65.8%, Test_loss:1.215, Lr:1.47E-04
Epoch:47, Train_acc:99.9%, Train_loss:0.028, Test_acc:66.3%, Test_loss:1.240, Lr:1.47E-04
Epoch:48, Train_acc:99.9%, Train_loss:0.027, Test_acc:66.8%, Test_loss:1.238, Lr:1.35E-04
Epoch:49, Train_acc:99.9%, Train_loss:0.025, Test_acc:66.3%, Test_loss:1.261, Lr:1.35E-04
Epoch:50, Train_acc:99.9%, Train_loss:0.024, Test_acc:66.8%, Test_loss:1.257, Lr:1.24E-04
Epoch:51, Train_acc:99.9%, Train_loss:0.023, Test_acc:66.3%, Test_loss:1.280, Lr:1.24E-04
Epoch:52, Train_acc:99.9%, Train_loss:0.022, Test_acc:66.8%, Test_loss:1.272, Lr:1.14E-04
Epoch:53, Train_acc:99.9%, Train_loss:0.021, Test_acc:66.8%, Test_loss:1.297, Lr:1.14E-04
Epoch:54, Train_acc:99.9%, Train_loss:0.020, Test_acc:67.3%, Test_loss:1.287, Lr:1.05E-04
Epoch:55, Train_acc:99.9%, Train_loss:0.019, Test_acc:66.3%, Test_loss:1.312, Lr:1.05E-04
Epoch:56, Train_acc:99.9%, Train_loss:0.019, Test_acc:66.8%, Test_loss:1.304, Lr:9.68E-05
Epoch:57, Train_acc:99.9%, Train_loss:0.018, Test_acc:66.3%, Test_loss:1.325, Lr:9.68E-05
Epoch:58, Train_acc:100.0%, Train_loss:0.017, Test_acc:66.8%, Test_loss:1.320, Lr:8.91E-05
Epoch:59, Train_acc:99.9%, Train_loss:0.017, Test_acc:66.3%, Test_loss:1.336, Lr:8.91E-05
Epoch:60, Train_acc:100.0%, Train_loss:0.016, Test_acc:66.8%, Test_loss:1.335, Lr:8.20E-05
Done. Best test acc:  0.7128712871287128

模型评估


import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

请添加图片描述

个人总结

学习了如何使用LSTM模型并成功运用于糖尿病预测
model_lstm 类继承自 torch.nn.Module
self.lstm0:第一个 LSTM 层,输入大小为 13,隐藏层大小为 200,层数为 1,且输入数据的维度为 (batch_size, sequence_length, input_size)。
self.lstm1:第二个 LSTM 层,输入大小为 200,隐藏层大小为 200,层数为 1,且输入数据的维度为 (batch_size, sequence_length, input_size)。
self.fc0:全连接层,输入大小为 200,输出大小为 2。
forward 方法定义了模型的前向传播过程,即输入数据如何通过模型的各个层生成输出。
输入 x 的维度为 (batch_size, sequence_length, input_size)。
out, hidden1 = self.lstm0(x):将输入 x 通过第一个 LSTM 层,返回输出 out 和隐藏状态 hidden1。
out, _ = self.lstm1(out, hidden1):将第一个 LSTM 层的输出 out 和隐藏状态 hidden1 通过第二个 LSTM 层,返回新的输出 out(第二个 LSTM 层的隐藏状态未使用,因此用 _ 表示忽略)。
out = self.fc0(out):将第二个 LSTM 层的输出 out 通过全连接层,最后返回模型的输出。

  • 语法

torch.nn.LSTM(input_size, hidden_size, num_layers=1,
bias=True, batch_first=False,
dropout=0, bidirectional=False)

● input_size: 输入特征的维度。
● hidden_size: 隐藏状态的维度,也是输出特征的维度。
● num_layers(可选参数): LSTM 层的数量,默认为 1。
● bias(可选参数): 是否使用偏置,默认为 True。
● batch_first(可选参数): 如果为 True,则输入和输出张量的形状为 (batch_size, seq_len, feature_size),默认为 False,张量的形状为(seq_len, batch_size, feature_dim)。
● dropout(可选参数): 如果非零,将在 LSTM 层的输出上应用 dropout,防止过拟合。默认为 0。
● bidirectional(可选参数): 如果为 True,则使用双向 LSTM,输出维度将翻倍。默认为 False。

;