Bootstrap

傅里叶级数公式推导

傅里叶展开

最简单的周期函数 随时变化的正弦信号:
f ( t ) = A sin ⁡ ( ω t + ψ ) f(t)=A\sin(\omega t+\psi) f(t)=Asin(ωt+ψ)
任意一个周期函数都可以表示为正弦函数线性叠加:
f ( t ) = A 0 + ∑ n = 1 ∞ A n sin ⁡ ( n ω t + ψ n ) f(t)=A_0+\sum^\infty_{n=1}A_n\sin(n\omega t+\psi_n) f(t)=A0+n=1Ansin(nωt+ψn)
由于 ψ n \psi_n ψn 为常数 A n A_n An 也是常数,将常数项整合到一起:
A n sin ⁡ ( n ω t + ψ n ) = A n sin ⁡ ψ n cos ⁡ ( n ω t ) + A n cos ⁡ ψ n sin ⁡ ( n ω t ) A_n\sin(n\omega t+\psi_n)=A_n\sin\psi_n\cos(n\omega t)+A_n\cos\psi_n\sin(n\omega t) Ansin(nωt+ψn)=Ansinψncos(nωt)+Ancosψnsin(nωt)
a n = A n sin ⁡ ψ n a_n=A_n\sin\psi_n an=Ansinψn b n = A n cos ⁡ ψ n b_n=A_n\cos\psi_n bn=Ancosψn 得到如下三角函数形式:
f ( t ) = A 0 + ∑ n = 1 ∞ [ a n cos ⁡ ( n ω t ) + b n sin ⁡ ( n ω t ) ] = ω = 2 π / T A 0 + ∑ n = 1 ∞ [ a n cos ⁡ ( 2 π n T t ) + b n sin ⁡ ( 2 π n T t ) ] \begin{aligned} f(t)&=A_0+\sum^\infty_{n=1}[a_n\cos(n\omega t)+b_n\sin(n\omega t)] \\[4ex] &\xlongequal{\omega={2\pi}/T}A_0+\sum^\infty_{n=1}[a_n\cos(\frac{2\pi n}T t)+b_n\sin(\frac{2\pi n}T t)] \end{aligned} f(t)=A0+n=1[ancos(nωt)+bnsin(nωt)]ω=2π/T A0+n=1[ancos(T2πnt)+bnsin(T2πnt)]

三角函数正交性

三角函数在一个周期内积分为0
三角函数系:1, cos ⁡ x \cos x cosx sin ⁡ x \sin x sinx cos ⁡ 2 x \cos 2x cos2x sin ⁡ 2 x \sin 2x sin2x,……, cos ⁡ n x \cos nx cosnx sin ⁡ n x \sin nx sinnx
若一个三角函数系中任意两个不同函数相乘,在 [ − π , π ] [-\pi,\pi] [π,π]上积分为0,称这个三角函数系在区间上正交

求傅里叶级数系数

对傅里叶展开式在 [ 0 , T ] [0,T] [0,T] 上求积分:
∫ 0 T f ( t ) d t = ∫ 0 T A 0 d t + ∫ 0 T ∑ n = 1 ∞ [ a n cos ⁡ ( 2 π n T t ) + b n sin ⁡ ( 2 π n T t ) ] d t = ∫ 0 T A 0 d t + 0 = T A 0 \begin{aligned} \int^T_0f(t)\mathrm dt & = \int^T_0A_0\mathrm dt+\int^T_0\sum^\infty_{n=1}[a_n\cos(\frac{2\pi n}T t)+b_n\sin(\frac{2\pi n}T t)]\mathrm dt \\[4ex] &=\int^T_0A_0\mathrm dt+0 \\[4ex] &=T A_0 \end{aligned} 0Tf(t)dt=0TA0dt+0Tn=1[ancos(T2πnt)+bnsin(T2πnt)]dt=0TA0dt+0=TA0
解得
A 0 = 1 T ∫ 0 T f ( t ) d t A_0=\frac1T\int^T_0f(t)\mathrm dt A0=T10Tf(t)dt
对傅里叶展开式两边同时乘以 cos ⁡ ( 2 π k T t ) \cos(\frac{2\pi k}T t) cos(T2πkt) 后在 [ 0 , T ] [0,T] [0,T] 上积分:
∫ 0 T f ( t ) cos ⁡ ( 2 π k T t ) d t = ∫ 0 T A 0 cos ⁡ ( 2 π k T t ) d t + ∫ 0 T ∑ n = 1 ∞ [ a n cos ⁡ ( 2 π n T t ) + b n sin ⁡ ( 2 π n T t ) ] cos ⁡ ( 2 π k T t ) d t = 0 + ∑ n = 1 ∞ [ ∫ 0 T a n cos ⁡ ( 2 π n T t ) cos ⁡ ( 2 π k T t ) d t + ∫ 0 T b n sin ⁡ ( 2 π n T t ) cos ⁡ ( 2 π k T t ) d t ] = ∫ 0 T a k cos ⁡ 2 ( 2 π k T t ) d t + 0 = a k 2 ∫ 0 T [ 1 + cos ⁡ ( 2 2 π k T t ) ] d t = a k 2 T \begin{aligned} \int^T_0f(t)\cos(\frac{2\pi k}T t)\mathrm dt & = \int^T_0A_0\cos(\frac{2\pi k}T t)\mathrm dt+\int^T_0\sum^\infty_{n=1}\left[a_n\cos(\frac{2\pi n}T t)+b_n\sin(\frac{2\pi n}T t)\right]\cos(\frac{2\pi k}T t)\mathrm dt \\[4ex] &=0+\sum^\infty_{n=1}\left[\int^T_0a_n\cos(\frac{2\pi n}T t)\cos(\frac{2\pi k}T t)\mathrm dt+\int^T_0b_n\sin(\frac{2\pi n}T t)\cos(\frac{2\pi k}T t)\mathrm dt\right] \\[4ex] &=\int^T_0a_k\cos^2(\frac{2\pi k}T t)\mathrm dt + 0 \\[4ex] &=\frac{a_k}2\int^T_0[1+\cos(2\frac{2\pi k}T t)]\mathrm dt \\[4ex] &=\frac{a_k}2T \end{aligned} 0Tf(t)cos(T2πkt)dt=0TA0cos(T2πkt)dt+0Tn=1[ancos(T2πnt)+bnsin(T2πnt)]cos(T2πkt)dt=0+n=1[0Tancos(T2πnt)cos(T2πkt)dt+0Tbnsin(T2πnt)cos(T2πkt)dt]=0Takcos2(T2πkt)dt+0=2ak0T[1+cos(2T2πkt)]dt=2akT
解得:
a n = 2 T ∫ 0 T cos ⁡ ( 2 π n T t ) f ( t ) d t a_n=\frac 2T\int^T_0\cos(\frac{2\pi n}Tt)f(t)\mathrm dt an=T20Tcos(T2πnt)f(t)dt
同理可以解得 b n b_n bn
b n = 2 T ∫ 0 T sin ⁡ ( 2 π n T t ) f ( t ) d t b_n=\frac 2T\int^T_0\sin(\frac{2\pi n}Tt)f(t)\mathrm dt bn=T20Tsin(T2πnt)f(t)dt

总结一下

f ( t ) = A 0 + ∑ n = 1 ∞ [ a n cos ⁡ ( 2 π n T t ) + b n sin ⁡ ( 2 π n T t ) ] f(t)=A_0+\sum^\infty_{n=1}[a_n\cos(\frac{2\pi n}T t)+b_n\sin(\frac{2\pi n}T t)] f(t)=A0+n=1[ancos(T2πnt)+bnsin(T2πnt)]
A 0 = 1 T ∫ 0 T f ( t ) d t = 1 2 a 0 A_0=\frac1T\int^T_0f(t)\mathrm dt=\frac 12a_0 A0=T10Tf(t)dt=21a0
a n = 2 T ∫ 0 T cos ⁡ ( 2 π n T t ) f ( t ) d t a_n=\frac 2T\int^T_0\cos(\frac{2\pi n}Tt)f(t)\mathrm dt an=T20Tcos(T2πnt)f(t)dt
b n = 2 T ∫ 0 T sin ⁡ ( 2 π n T t ) f ( t ) d t b_n=\frac 2T\int^T_0\sin(\frac{2\pi n}Tt)f(t)\mathrm dt bn=T20Tsin(T2πnt)f(t)dt

;