Bootstrap

基于matlab的双目图像立体匹配算法仿真

目录

1.算法概述

2.仿真效果

2.仿真效果


1.算法概述

       针对全局立体匹配算法计算量大的问题,引入全局差错能量函数对算法进行改进.将全局差错能量函数作为立体匹配的匹配代价,同时进行跳跃式区域生长,隔点求取差错能量函数值以获取视差图,并采用均值滤波器对其做平滑处理,设置影响滤波阈值大小的容差系数,使之更适合人眼的观察.针对不同像素的彩色图像对,自适应选取容差系数得到较优的滤波后视差图.实验结果表明,改进算法在保证准确性的基础上可有效减小计算耗时,提高匹配实时性.

立体匹配算法步骤

1)匹配代价计算(Cost Computation):

       计算匹配代价,即计算参考图像上每个像素点IR(P),以所有视差可能性去匹配目标图像上对应点IT(pd)的代价值,因此计算得到的代价值可以存储在一个h*w*d(MAX)的三维数组中,通常称这个三维数组为视差空间图(Disparity Space Image,DSI)。匹配代价时立体匹配的基础,设计抗噪声干扰、对光照变化不敏感的匹配代价,能提高立体匹配的精度。因此,匹配代价的设计在全局算法和局部算法中都是研究的重点。

2)代价聚合(Cost Aggregation)

         通常全局算法不需要代价聚合,而局部算法需要通过求和、求均值或其他方法对一个支持窗口内的匹配代价进行聚合而得到参考图像上一点p在视差d处的累积代价CA(p,d),这一过程称为代价聚合。通过匹配代价聚合,可以降低异常点的影响,提高信噪比(SNR,Signal Noise Ratio)进而提高匹配精度。代价聚合策略通常是局部匹配算法

;