严版数据结构P162 算法7.1 - 7.2
依据此,延伸创建无向图、有向图、有向网
代码如下:
#include<stdio.h>
#include<iostream>
#include<stdlib.h>
#include<limits.h>
#include<iomanip>
using namespace std;
#define TRUE 1
#define FALSE 0
#define OK 1
#define ERROR 0
#define OVERFLOW -2
#define INFINITY INT_MAX //最大值
#define MAX_VERTEX_NUM 20 //最大顶点个数
typedef int Status;
typedef int VRType;
typedef int InfoType;
//{有向图,有向网,无向图,无向网}
typedef enum{DG,DN,UDG,UDN}GraphKind;
typedef struct ArcCell {
VRType adj;//VRType是顶点关系类型。对无权图,用1或0
//表示相邻否;对带权图,则为权值类型
InfoType *info;//该弧相关信息的指针
}ArcCell,AdjMatrix[MAX_VERTEX_NUM][MAX_VERTEX_NUM];
typedef char VertexType;
typedef struct {
VertexType vexs[MAX_VERTEX_NUM];//顶点向量
AdjMatrix arcs;//邻接矩阵
int vexnum, arcnum;//图的当前顶点数和弧数
GraphKind kind;//图的种类标志
}MGraph;
//在G中找到v对应的顶点位置
int LocateVex(MGraph G, char v)
{
int i;
for (i = 0; i < G.vexnum; i++)
{
if (G.vexs[i] == v)
{
return i;
}
}
return -1;
}
/*
算法7.2
采用数组(邻接矩阵)表示法,构造无向网G
*/
Status CreateUDN(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量
//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = INFINITY;
G.arcs[i][j].info = NULL;
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj和权值w(int):" << endl;
//输入一条边依附的顶点及权值
cin >> v1;
cin >> v2;
cin >> w;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = w;//弧<v1,v2>的权值
//置<v1,v2>的对称弧<v2,v1>
G.arcs[j][i].adj = G.arcs[i][j].adj;
}
return OK;
}
Status CreateDN(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量
//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = INFINITY;
G.arcs[i][j].info = NULL;
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj和权值w(int):" << endl;
//输入一条边依附的顶点及权值
cin >> v1;
cin >> v2;
cin >> w;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = w;//弧<v1,v2>的权值
}
return OK;
}
/*
有向图的构造
*/
Status CreateDG(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量
//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = 0;
G.arcs[i][j].info = NULL;
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj:" << endl;
cin >> v1;
cin >> v2;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = 1;//1代表可达,0代表不可达
}
return OK;
}
/*
无向图的构造
*/
Status CreateUDG(MGraph &G)
{
int i, j, k, w;
VertexType v1, v2;
cout << "输入顶点数G.vexnum:";
cin >> G.vexnum;
cout << "输入边数G.arcnum:";
cin >> G.arcnum;
getchar();
for (i = 0; i < G.vexnum; i++)
{
cout << "输入顶点G.vexs[" << i << "]" << endl;
cin >> G.vexs[i];
getchar();
}//构造顶点向量
//初始化邻接矩阵
for (i = 0; i < G.vexnum; i++)
{
for (j = 0; j < G.vexnum; j++)
{
G.arcs[i][j].adj = 0;
G.arcs[i][j].info = NULL;
}
}
//构造邻接矩阵
for (k = 0; k < G.arcnum; ++k)
{
cout << "输入第" << k + 1 << "条边vi、vj:" << endl;
cin >> v1;
cin >> v2;
getchar();
//确定v1和v2在G中的位置
i = LocateVex(G, v1);
j = LocateVex(G, v2);
G.arcs[i][j].adj = 1;//1代表可达,0代表不可达
G.arcs[j][i].adj = G.arcs[i][j].adj;
}
return OK;
}
/*
算法7.1
采用数组(邻接矩阵)表示法,构造图G。
*/
Status CreateGraph(MGraph &G)
{
cout << "请输入图的种类:0表示DG,1表示DN,2表示UDG,3表示UDN" << endl;
int x;
cin >> x;
G.kind=(GraphKind)x;
switch (G.kind)
{
case DG:
return CreateDG(G);
case DN:
return CreateDN(G);
case UDG:
return CreateUDG(G);
case UDN:return CreateUDN(G);
default:return ERROR;
}
}
void list(MGraph G)
{
int i, j;
cout << "输出邻接矩阵:" << endl;
for (i = 0; i < G.vexnum; ++i)
{
cout << G.vexs[i] << "----";
for (j = 0; j < G.vexnum; ++j)
{
if (G.arcs[i][j].adj == INFINITY)
cout << setw(4) << "∞";
else
cout << setw(4) << G.arcs[i][j].adj;
}
cout << endl;
}
}
void main()
{
MGraph G;
int x=1;
while (x)
{
CreateGraph(G);
list(G);
cout << "是否继续(1、继续,0、退出)";
cin >> x;
cout << endl;
}
system("pause");
}