Bootstrap

海上目标识别:利用YOLO模型构建舰船检测系统

1. 引言

随着海上活动的增加,舰船检测与识别在海洋监控、港口管理、海事救援等领域变得越来越重要。传统的监控方式效率低、误报率高,而深度学习技术的发展为解决这一问题提供了新的途径。

2. 项目准备
必备环境与工具
  • Python:项目开发的主要编程语言
  • Anaconda:Python数据科学平台,便于环境管理和包管理
  • YOLO (You Only Look Once):目标检测模型,选择v8/v7/v6/v5版本
  • OpenCV:计算机视觉库
  • Flask/Django:用于搭建UI界面的Web框架
安装与配置步骤
  1. 安装Python与Anaconda

    从Python官网下载安装Python:https://www.python.org/downloads/

    从Anaconda官网下载安装Anaconda:https://www.anaconda.com/products/distribution

  2. 配置YOLO环境

    安装YOLO依赖:

    pip install torch torchvision torchaudio
    pip install -U git+https://github.com/ultralytics/yolov5
    
3. 数据集准备
数据集简介

使用公开的舰船检测数据集,包含海上多种场景的舰船图像和标注。

数据集下载链接:https://www.kaggle.com/datasets

数据预处理
  1. 数据增强与标注

    使用LabelImg进行图像标注:https://github.com/tzutalin/labelImg

    安装LabelImg:

    pip install labelImg
    

    运行LabelImg进行图像标注:

    labelImg
    
  2. 数据集划分

    将数据集划分为训练集、验证集和测试集:

    import os
    import shutil
    import random
    
    def split_dataset(source_dir, train_dir, val_dir, test_dir, train_ratio=0.7, val_ratio=0.2):
        all_files = os.listdir(source_dir)
        random.shuffle(all_files)
        train_count = int(len(all_files) * train_ratio)
        val_count = int(len(all_files) * val_ratio)
    
        for i, file in enumerate(all_files):
            if i < train_count:
                shutil.move(os.path.join(source_dir, file), train_dir)
            elif i < train_count + val_count:
                shutil.move(os.path.join(source_dir, file), val_dir)
            else:
                shutil.move(os.path.join(source_dir, file), test_dir)
    
    split_dataset('data/source', 'data/train', 'data/val', 'data/test')
    
4. 模型训练
YOLO模型简介

YOLO (You Only Look Once) 是一种快速准确的目标检测模型。YOLOv8/v7/v6/v5 是不同版本的YOLO模型,性能和速度有所不同。

配置与训练
  1. 配置文件的修改

    修改YOLO配置文件:

    # example.yaml
    train: data/train
    val: data/val
    nc: 1  # number of classes (ship)
    names: ['ship']
    
  2. 超参数调整

    在配置文件中调整超参数,如batch size、learning rate等。

  3. 训练模型的步骤

    使用以下命令训练模型:

    python train.py --img 640 --batch 16 --epochs 50 --data example.yaml --cfg yolov5s.yaml --weights yolov5s.pt
    
训练过程中的常见问题与解决
  • 内存不足:减少batch size
  • 训练速度慢:使用GPU加速,确保CUDA正确安装
5. 模型评估与优化
模型评估指标
  • 准确率 (Accuracy)
  • 召回率 (Recall)
  • F1分数 (F1 Score)
from sklearn.metrics import accuracy_score, recall_score, f1_score

y_true = [...]  # true labels
y_pred = [...]  # predicted labels

accuracy = accuracy_score(y_true, y_pred)
recall = recall_score(y_true, y_pred, average='macro')
f1 = f1_score(y_true, y_pred, average='macro')

print(f"Accuracy: {accuracy}, Recall: {recall}, F1 Score: {f1}")
模型优化策略
  • 数据增强:使用更多的数据增强技术,如旋转、缩放、裁剪等
  • 超参数调优:通过网格搜索或贝叶斯优化找到最佳超参数
  • 使用迁移学习:使用预训练模型进行微调
6. 模型部署
Flask/Django搭建UI界面
  1. 项目结构介绍

    ship_detection/
    ├── app.py
    ├── templates/
    │   ├── index.html
    │   └── result.html
    ├── static/
    │   └── styles.css
    └── models/
        └── yolov5s.pt
    
  2. 创建基础的网页模板

    • index.html

      <!DOCTYPE html>
      <html lang="en">
      <head>
          <meta charset="UTF-8">
          <meta name="viewport" content="width=device-width, initial-scale=1.0">
          <title>Ship Detection</title>
          <link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">
      </head>
      <body>
          <h1>Ship Detection</h1>
          <form action="/predict" method="post" enctype="multipart/form-data">
              <input type="file" name="file">
              <button type="submit">Upload</button>
          </form>
      </body>
      </html>
      
    • result.html

      <!DOCTYPE html>
      <html lang="en">
      <head>
          <meta charset="UTF-8">
          <meta name="viewport" content="width=device-width, initial-scale=1.0">
          <title>Result</title>
          <link rel="stylesheet" href="{{ url_for('static', filename='styles.css') }}">
      </head>
      <body>
          <h1>Detection Result</h1>
          <img src="{{ url_for('static', filename='uploads/' + filename) }}" alt="Uploaded Image">
          <p>{{ result }}</p>
      </body>
      </html>
      
后端集成
  1. 接口设计与实现

    • app.py
      from flask import Flask, request, render_template, url_for
      import os
      from werkzeug.utils import secure_filename
      import torch
      from PIL import Image
      
      app = Flask(__name__)
      app.config['UPLOAD_FOLDER'] = 'static/uploads/'
      
      model = torch.hub.load('ultralytics/yolov5', 'custom', path='models/yolov5s.pt')
      
      @app.route('/')
      def index():
          return render_template('index.html')
      
      @app.route('/predict', methods=['POST'])
      def predict():
          if 'file' not in request.files:
              return 'No file part'
          file = request.files['file']
          if file.filename == '':
              return 'No selected file'
          if file:
              filename = secure_filename(file.filename)
              filepath = os.path.join(app.config['UPLOAD_FOLDER'], filename)
              file.save(filepath)
              img = Image.open(filepath)
              results = model(img)
              results.save(save_dir=app.config['UPLOAD_FOLDER'])
              return render_template('result.html', filename=filename, result=results.pandas().xyxy[0].to_json(orient="records"))
      
      if __name__ == '__main__':
          app.run(debug=True)
      
部署模型到服务器
  1. 使用Gunicorn或其他部署工具

    pip install gunicorn
    gunicorn -w 4 app:app
    
  2. 部署到云服务器

    以AWS为例,创建EC2实例,配置安全组,上传项目文件,并使用Gunicorn运行应用。

7. 系统测试与演示
本地测试
  1. 测试用例设计

    设计多种海上场景测试系统的准确性。

  2. 测试结果分析

    记录测试结果,分析模型的准确性和误差。

在线演示
  1. 系统演示视频

    使用录屏软件录制系统的操作流程。

  2. 在线测试链接

    部署到云服务器后,提供在线测试链接供用户体验。

未来工作展望
  1. 系统优化方向

    进一步优化模型,提高检测准确性,减少误报和漏报。

  2. 更多应用场景探讨

    将该技术应用于更多的船舶监控和管理场景,如海上救援、港口管理等。

声明

声明:本文只是简单的项目思路,如有部署的想法,想要(UI界面+YOLOv8/v7/v6/v5代码+训练数据集+视频教学)的可以联系作者.

;