Bootstrap

机器学习基础算法---KNN算法

这篇博客是参考下面这个博主的这篇文章,http://blog.csdn.net/zouxy09/article/details/16955347

写得非常好,让我学到了很多知识点,也让我巩固了有关于numpy的一些矩阵用法,调用python脚本等知识,非常感谢这位博主。

再学习了他的这篇博客后,把代码自己敲了一遍,加上了自己在阅读代码时的中文注释;利用他的数据集进行了测试,也得到了相应的结果。


对于KNN算法就不再描述了。

数据集在这里下载http://download.csdn.net/detail/zouxy09/6610571

下面引用原博主的一些内容来介绍数据集

这个数据库包括数字0-9的手写体。每个数字大约有200个样本。每个样本保持在一个txt文件中。手写体图像本身的大小是32x32的二值图,转换到txt文件保存后,内容也是32x32个数字,0或者1,如下:

数据库解压后有两个目录:目录trainingDigits存放的是大约2000个训练数据,testDigits存放大约900个测试数据。

        这里我们还是新建一个kNN.py脚本文件,文件里面包含四个函数,一个用来生成将每个样本的txt文件转换为对应的一个向量,一个用来加载整个数据库,一个实现kNN分类算法。最后就是实现这个加载,测试的函数。




一共1934个文件,最后构建的矩阵是1934x1024的矩阵。


下面是在pycharm上的代码:

from numpy import *
import operator
import os


# classify using kNN
def kNNClassify(newInput, dataSet, labels, k):
    numSamples = dataSet.shape[0]  # shape[0] stands for the num of row  求出矩阵有几行,即有几个样本

    ## step 1: calculate Euclidean distance #计算欧式距离
    # tile(A, reps): Construct an array by repeating A reps times
    # the following copy numSamples rows for dataSet
    #numSamples=4,tile用新样本copy4x1的矩阵,再减去dataSet得到该样本与数据集每个样本的差异
    diff = tile(newInput, (numSamples, 1)) - dataSet  # Subtract element-wise
    #diff的每个元素求平方
    squaredDiff = diff ** 2  # squared for the subtract
    #对平方后的矩阵每行元素求和
    squaredDist = sum(squaredDiff, axis=1)  # sum is performed by row
    #在对每个和开根号
    distance = squaredDist ** 0.5

    ## step 2: sort the distance
    # argsort() returns the indices that would sort an array in a ascending order
    #得到距离数组从小到大排序后的索引,numpy中argsort的用法
    sortedDistIndices = argsort(distance)

    classCount = {}  # define a dictionary (can be append element)
    for i in xrange(k):
        ## step 3: choose the min k distance
        #对于k中的每个i,找到其对应的label,一共k个近邻的label
        voteLabel = labels[sortedDistIndices[i]]

        ## step 4: count the times labels occur
        # when the key voteLabel is not in dictionary classCount, get()
        # will return 0
        #dict.get()函数是搜索键,如果键不存在,键值默认为0,如果存在,键值即为其对应键值
        classCount[voteLabel] = classCount.get(voteLabel, 0) + 1

    ## step 5: the max voted class will return
    maxCount = 0
    for key, value in classCount.items():
        if value > maxCount:
            maxCount = value
            maxIndex = key

    return maxIndex


# convert image to vector  把每一个文件构建成一个向量
def img2vector(filename):
    rows = 32
    cols = 32
    imgVector = zeros((1, rows * cols))  #创建1x(32*32)的全0  矩阵 一行32*32列
    fileIn = open(filename)
    for row in xrange(rows):
        lineStr = fileIn.readline()
        for col in xrange(cols):
            imgVector[0, row * 32 + col] = int(lineStr[col])#  第0行的第row*32+col列的元素

    return imgVector


# load dataSet 载入数据集,对所有数据集中所有文件进行向量的转换
def loadDataSet():
    ## step 1: Getting training set
    print "---Getting training set..."
    dataSetDir = 'E:/Machine-learning Algorithm/knn/digits/'
    #获得训练集中的所有文件列表trainingFileList#
    trainingFileList = os.listdir(dataSetDir + 'trainingDigits')  # load the training set
    numSamples = len(trainingFileList)#统计有多少个文件1934个文件

    train_x = zeros((numSamples, 1024))#创建1934*1024的全0 矩阵
    train_y = []  #用来存放每个文件,即每个行的label
    for i in xrange(numSamples):
        filename = trainingFileList[i]

        # get train_x
        #通过img2vector函数把某个文件中的1024个数字变成向量,放入训练矩阵的第i行中
        train_x[i, :] = img2vector(dataSetDir + 'trainingDigits/%s' % filename)

        # get label from file name such as "1_18.txt"
        label = int(filename.split('_')[0])  # return 1
        train_y.append(label)

    ## step 2: Getting testing set
    print "---Getting testing set..."
    testingFileList = os.listdir(dataSetDir + 'testDigits')  # load the testing set
    numSamples = len(testingFileList)
    test_x = zeros((numSamples, 1024))
    test_y = []
    for i in xrange(numSamples):
        filename = testingFileList[i]

        # get train_x
        test_x[i, :] = img2vector(dataSetDir + 'testDigits/%s' % filename)

        # get label from file name such as "1_18.txt"
        label = int(filename.split('_')[0])  # return 1
        test_y.append(label)

    #返回训练集矩阵,训练集标签列表;返回测试集矩阵,测试集标签列表
    return train_x, train_y, test_x, test_y


# test hand writing class
def testHandWritingClass():
    ## step 1: load data
    print "step 1: load data..."
    train_x, train_y, test_x, test_y = loadDataSet()

    ## step 2: training...
    print "step 2: training..."
    pass

    ## step 3: testing
    print "step 3: testing..."
    numTestSamples = test_x.shape[0]  #测试集有多少行
    matchCount = 0
    for i in xrange(numTestSamples):
        predict = kNNClassify(test_x[i], train_x, train_y, 3)#多测试集中的test_x[i],在训练集train上预测
        if predict == test_y[i]:                             #预测结果再与test_y[i]标签比对,看是否预测正确,再计算准确率
            matchCount += 1
    accuracy = float(matchCount) / numTestSamples

    ## step 4: show the result
    print "step 4: show the result..."
    print 'The classify accuracy is: %.2f%%' % (accuracy * 100)


testHandWritingClass()


结果如下:




再次感谢博主!



;