在线文档
任务类型 | 任务内容 | 预计耗时 | 完成度 |
---|---|---|---|
基础任务 | 使用 Cli Demo 完成 InternLM2-Chat-1.8B 模型的部署,并生成 300 字小故事,记录复现过程并截图 | 30mins | 完成 |
闯关任务 | 使用 LMDeploy 完成 InternLM-XComposer2-VL-1.8B 的部署,并完成一次图文理解对话,记录复现过程并截图。 | 20mins | 未完成 |
闯关任务 | 使用 LMDeploy 完成 InternVL2-2B 的部署,并完成一次图文理解对话,记录复现过程并截图。 | 20mins | 未完成 |
基础任务:用 Cli Demo 完成 InternLM2-Chat-1.8B 模型的部署,并生成 300 字小故事
- 我没有按照教程来
- 启动开发机,并选择cu11.7
- 撰写部署环境脚本并执行
vi demo_env.sh
, 复制下面代码进去然后bash demo_env.sh
conda create -n demo python=3.10 -y
source activate demo
pip install torch==2.0.1+cu117 torchvision==0.15.2+cu117 torchaudio==2.0.2 torchtext==0.15.2 -f https://mirror.sjtu.edu.cn/pytorch-wheels/cu117/?mirror_intel_list -f https://download.pytorch.org/whl/cu117/torch_stable.html
pip install transformers sentencepiece einops \
protobuf accelerate streamlit
vi cli_demo.py
, 复制下面代码进去然后conda activate demo && python cli_demo.py
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name_or_path = "/root/share/new_models/Shanghai_AI_Laboratory/internlm2-chat-1_8b"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path, trust_remote_code=True, device_map='cuda:0')
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, trust_remote_code=True, torch_dtype=torch.bfloat16, device_map='cuda:0')
model = model.eval()
system_prompt = """You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
messages = [(system_prompt, '')]
print("=============Welcome to InternLM chatbot, type 'exit' to exit.=============")
while True:
input_text = input("\nUser >>> ")
input_text = input_text.replace(' ', '')
if input_text == "exit":
break
length = 0
for response, _ in model.stream_chat(tokenizer, input_text, messages):
if response is not None:
print(response[length:], flush=True, end="")
length = len(response)
- ^新建文件夹
- ^ 安装env
- 载入LLM,进行提问.发现占用5G VRAM
- ^ 问他生成一个黑白小狗的300字故事.(真慢啊1_8b!)