优化器
这里用了优化器,五层手写的公式比较繁多,用优化器来提高效率
代码实现
import tensorflow as tf
import random
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data
tf.set_random_seed(777) # reproducibility
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
# parameters
learning_rate = 0.001
training_epochs = 15
batch_size = 100
# input place holders
X = tf.placeholder(tf.float32, [None, 784])
Y = tf.placeholder(tf.float32, [None, 10])
# weights & bias for nn layers
# http://stackoverflow.com/questions/33640581/how-to-do-xavier-initialization-on-tensorflow
W1 = tf.get_variable("W1", shape=[784, 512],
initializer=tf.contrib.layers.xavier_initializer())
b1 = tf.Variable(tf.random_normal([512]))
L1 = tf.nn.relu(tf.matmul(X, W1) + b1)
W2 = tf.get_variable("W2", shape=[512, 512</